Thèse soutenue

Algorithmique et combinatoire des mots par les représentations S-adiques

FR  |  
EN
Auteur / Autrice : Pierre Béaur
Direction : Nathalie AubrunBenjamin Hellouin de Menibus
Type : Thèse de doctorat
Discipline(s) : Informatique mathématique
Date : Soutenance le 05/07/2024
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire interdisciplinaire des sciences du numérique (Orsay, Essonne ; 2021-....)
Equipe de recherche : GALaC - Graphes, Algorithmes et Combinatoire
référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-....)
Jury : Président / Présidente : Valérie Berthé
Examinateurs / Examinatrices : Sylvain Lombardy, Gwenaël Richomme, Marie-Pierre Béal, Matthieu Rosenfeld, Manon Stipulanti
Rapporteurs / Rapporteuses : Sylvain Lombardy, Gwenaël Richomme

Résumé

FR  |  
EN

En combinatoire des mots, une méthode classique de construction de mots infinis est le modèle substitutif. Il consiste à itérer infiniment une transformation (une substitution) sur une lettre initiale. Le modèle substitutif a permis de créer et d'étudier des mots infinis possédant des structures répétitives fortes mais non périodiques. Introduites à la fin des années 1990, les représentations S-adiques forment une extension classique du modèle substitutif. Dans le modèle S-adique, plutôt qu'itérer une seule et même substitution, il est possible de choisir une substitution à chaque itération dans un ensemble fini. Les représentations S-adiques ont originellement été établies à des fins dynamiques, et caractérisent plusieurs familles classiques de mots comme les mots Sturmiens qui n'étaient pas complètement capturées par le modèle substitutif. Cette thèse s'intéresse à l'utilisation des représentations S-adiques à des fins combinatoires et algorithmiques.Dans une première partie, je propose une application dans le cadre de la théorie des ω-automates. L'objectif est de décider si un ω-automate faible accepte un mot Sturmien. Je développe une méthode, la désubstitution d'automates, qui permet de résoudre cette question, et de donner des propriétés combinatoires des ω-automates acceptant un mot Sturmien. Ces méthodes peuvent être généralisées à d'autres constructions substitutives (mot purement substitutif, point fixe d'une substitution) et aux autres familles de mots admettant une caractérisation S-adique. Il est possible d'utiliser ces méthodes pour résoudre différents problèmes annexes, comme le codage d'un mot Sturmien, ou, en géométrie discrète, le recollement de segments discrets. La deuxième partie est consacrée à l'étude des pièges à facteurs sur les mots bi-infinis. Elle résulte d'un travail collaboratif avec Hellouin et Gheeraert. Les pièges à facteurs viennent de la théorie de la compression, et sont un objet combinatoire permettant de mesurer la répétitivité d'un mot. Dans le cas mono-infini, seuls les mots ultimement périodiques admettent des pièges à facteurs finis. Nous prouvons que dans le cas bi-infini, ce résultat ne tient plus : nous exhibons et caractérisons les mots bi-infinis apériodiques admettant des pièges à facteurs finis. Il s'agit des mots Sturmiens caractéristiques, de leurs décalages finis, et de leurs images par des substitutions apériodiques. Nos méthodes reposent sur la caractérisation S-adique des mots Sturmiens, et consiste principalement en une adaptation de la désubstitution aux pièges à facteurs. Dans la troisième et dernière partie, j'explore les possibilités combinatoires des représentations S-adiques dans de nouveaux espaces. Je prouve que deux modèles exotiques de représentations S-adiques, les modèles d'Aubrun-Sablik et de Baraviera-Leplaideur, respectivement sur ℕᵈ et sur le monoïde libre à deux éléments, ne peuvent pas représenter toute configuration : ils ne sont pas universels. Enfin, j'étudie une variante du problème du domino, appelée le problème du X-domino, paramétré par un sous-shift ou une famille de mots X. Le but est d'appréhender la frontière d'indécidabilité entre une et deux dimensions. Je m'intéresse au cas où X est un sous-shift minimal, puis j'explore le cas des mots Sturmiens et des mots sans carré.