Développement de capteur de gaz à base de nanofibres pour la détection de maladies respiratoires
Auteur / Autrice : | Niloufar Khomarloo |
Direction : | Hayriye Gidik, Roohollah Bagherzadeh |
Type : | Thèse de doctorat |
Discipline(s) : | Micro-nanosystèmes et capteurs |
Date : | Soutenance le 30/09/2024 |
Etablissement(s) : | Université de Lille (2022-....) en cotutelle avec Amirkabir University of Technology (Tehran, Iran) |
Ecole(s) doctorale(s) : | École graduée Sciences de l’ingénierie et des systèmes (Lille ; 2021-....) |
Partenaire(s) de recherche : | Laboratoire : GEMTEX (Roubaix) |
Jury : | Président / Présidente : Fabien Salaün |
Examinateurs / Examinatrices : Elham Mohsenzadeh, Emilie Drean, Latifa Latrous | |
Rapporteurs / Rapporteuses : Farideh Golbabaei, Dominique Adolphe |
Mots clés
Résumé
Les capteurs de gaz sont conçus pour détecter la présence ou la concentration de divers gaz dans l'atmosphère. L'oxyde de zinc est un semi-conducteur d'oxyde métallique largement utilisé pour les capteurs de gaz, en particulier pour la détection des oxydes d'azote (NO et NO2) dans l'air. Ces défis incluent la nécessité de températures de fonctionnement élevées. Les MOGs montrent souvent une faible sélectivité pour le NO et le NO2 en raison de leur sensibilité aux interférences d'autres gaz présents dans l'environnement. De plus, ils peuvent présenter une faible sensibilité lors de la détection de gaz à faibles concentrations, ce qui affecte leur efficacité dans les scénarios nécessitant des mesures précises. Un autre problème notable est le temps de réponse et de récupération relativement lent des MOGs, ce qui affecte leur réactivité en temps réel. Des préoccupations ont également été soulevées concernant la faible stabilité et la fiabilité de ces capteurs sur de longues périodes. La communauté scientifique s'attaque activement à ces défis en recherchant des moyens d'améliorer l'efficacité opérationnelle, la sélectivité, la sensibilité et la stabilité à long terme des MOGs. Ces efforts sont cruciaux pour faire progresser l'application de ces capteurs dans divers domaines, de la surveillance environnementale au diagnostic médical et à la sécurité industrielle. L'électrofilage est une technique prometteuse pour produire des structures en nanofibres, ce qui augmente la surface disponible pour l'interaction avec les gaz. Cette technique améliore la sensibilité et la sélectivité grâce à la structure spéciale des nanofibres. La morphologie des nanofibres favorise l'adsorption des molécules de gaz sur la surface, améliorant ainsi la réponse du capteur même à des concentrations de gaz plus faibles. La production de matériaux composites à base de ZnO est une stratégie prometteuse pour améliorer les performances de détection. Cette approche améliore la sensibilité et la sélectivité pour des gaz spécifiques grâce à l'effet synergique entre les composites et réduit la température de fonctionnement des MOG. Cela est réalisé en facilitant le transfert de charge et les mécanismes de détection des gaz au niveau de la jonction p-n. Les matériaux composites améliorent également la stabilité et la répétabilité des MOG en atténuant l'influence de l'humidité, de l'oxygène et d'autres gaz interférents. Malgré les diverses méthodologies employées pour améliorer les MOG, il existe encore un manque notable de recherche sur l'exploration des changements morphologiques dans les structures de nanofibres de ZnO pour la détection du NO et du NO2 et leur impact sur l'amélioration des performances des MOG. La présente étude a poursuivi deux objectifs spécifiques pour affiner les capacités de détection. Premièrement, l'enquête s'est concentrée sur le rôle de la structure des nanofibres de ZnO, en examinant spécifiquement des paramètres tels que le diamètre et l'épaisseur. L'objectif était d'améliorer la sensibilité au NO en mettant en évidence comment les variations de ces attributs structurels influencent les performances de détection. Deuxièmement, l'étude visait à réduire la température de fonctionnement des MOG. Cet objectif a été atteint en introduisant de l'oxyde de graphène réduit comme matériau composite avec le ZnO. L'objectif principal était non seulement de réduire la température de fonctionnement, mais aussi de maintenir des temps de réponse et de récupération optimaux. L'utilisation de rGO avec ZnO visait à trouver un équilibre, assurant une sensibilité accrue au NO et au NO2 sans compromettre la capacité du capteur à fournir des réponses rapides et précises. Cette approche duale vise à faire progresser les technologies de détection des gaz, en se concentrant sur l'optimisation des structures de nanofibres de ZnO et l'utilisation de matériaux composites pour améliorer les performances des MOG.