Thèse soutenue

Segmentation des vaisseaux sanguins par approche variationnelle et apprentissage profond

FR  |  
EN
Auteur / Autrice : Sophie Carneiro Esteves
Direction : Antoine Vacavant
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/05/2024
Etablissement(s) : Université Clermont Auvergne (2021-...)
Ecole(s) doctorale(s) : École doctorale des sciences pour l'ingénieur (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Institut Pascal (Aubière, Puy-de-Dôme)
Jury : Président / Présidente : Caroline Petitjean
Examinateurs / Examinatrices : Antoine Vacavant, Odyssée Merveille, Noémie Debroux
Rapporteurs / Rapporteuses : Nelly Pustelnik, Thierry Géraud

Résumé

FR  |  
EN

La segmentation des vaisseaux sanguins à partir d'images médicales est une étape cruciale dans diverses applications cliniques, telles que la planification chirurgicale, le diagnostic des maladies et le suivi des traitements. Cependant, elle reste un défi en raison de la diversité des modalités d'imagerie, de la géométrie complexe des structures et du faible contraste des images biomédicales. L'apprentissage profond fournit une puissance de représentation importante pour apprendre une fonction qui permet l'obtention d'une segmentation précise. Néanmoins, même avec le développement de méthodes semi-supervisées, cette fonction reste dépendante du jeu de données annoté disponible. En parallèle, les méthodes non supervisées tendent à mieux se généraliser, mais leurs performances en termes de segmentation sont généralement moindres, en particulier lorsqu'il s'agit de préserver la connectivité, qui est crucial pour les applications cliniques.Dans ce travail, nous proposons de nouvelles méthodes de segmentation des vaisseaux sanguins qui visent à préserver la connectivité des réseaux vasculaires pour différentes modalités d'imagerie afin de concilier généralisation et performance.Tirant parti de l'apprentissage profond, nous proposons tout d'abord un modèle pour reconnecter les structures vasculaires binaires fragmentées en 2D et en 3D. Ce modèle peut être appliqué comme post-traitement dans un contexte non supervisé ou supervisé, en fonction de la disponibilité des annotations vasculaires du jeu de données cible. En outre, nous montrons la possibilité de l'appliquer à des segmentations obtenues par différentes méthodes.Cependant, l'utilisation du modèle de reconnexion en tant que post-traitement ne permet pas l'utilisation de l'a priori sur la structure vasculaire présent dans les images médicales. Nous proposons donc d'utiliser notre modèle de reconnexion conjointement avec la tâche de segmentation. À cette fin, nous l'avons intégré dans un schéma de segmentation variationnelle, qui permet la détection de réseaux vasculaires dans différents jeux de données sans nécessiter d'annotation. Nous avons testé notre méthode sur différents jeux de données, composés d'images de fond de rétines 2D, de volume tomodensitométriques de foie et d'angiographies par résonance magnétiques cérébrales 3D. Nous montrons que cette dernière préserve mieux la structure des réseaux vasculaires dans les images réelles que les méthodes non supervisées et semi-supervisées traditionnelles, tout en améliorant la connectivité globale de l'arbre vasculaire.