Thèse soutenue

Modélisation et optimisation du comportement thermomécanique des pièces métalliques obtenues par frittage : Approche numérique et expérimentale.

FR  |  
EN
Auteur / Autrice : Judice Cumbunga
Direction : Said AbboudiSamuel GomesDominique Chamoret
Type : Thèse de doctorat
Discipline(s) : Mécanique appliquée
Date : Soutenance le 27/03/2024
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) (Dijon) - Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] / LICB
Etablissement de préparation : Université de technologie de Belfort-Montbéliard
Jury : Président / Présidente : François Lanzetta
Examinateurs / Examinatrices : Said Abboudi, Samuel Gomes, Dominique Chamoret, Jean-Michel Bergheau, Jean-Gabriel Bauzin, Sudipta Biswas, Jone Heitor Sebastião
Rapporteurs / Rapporteuses : Jean-Michel Bergheau, Jean-Gabriel Bauzin

Résumé

FR  |  
EN

Le procédé de frittage sans pression à l'état solide est un traitement thermique appliqué pour améliorer ou ajuster les propriétés du matériau en fonction de son domaine d’application, compte tenu de sa capacité à traiter des pièces à géométrie complexe, de sa grande précision dimensionnelle, de ses petites dimensions et de son adéquation aux matériaux doux et durs. Cependant, la modélisation de ce type de procédé s’avère une tâche difficile, car un modèle approprié doit prendre en compte différents aspects, à savoir le caractère multi-échelle et multiphysique du problème, la forte non-linéarité du matériau, la complexité des géométries et enfin la nature des conditions aux limites, etc. Sur le plan industriel, les paramètres de traitement thermiques appropriés sont principalement obtenus par essais. La simulation numérique permet de réduire les coûts de ces essais et de fournir des prévisions ou des recommandations plus utiles pour la production réelle, que les essais de frittage proprement dits. De nombreux travaux de recherche ont été consacrés aux développements de modèles mathématiques et numériques avec des approches adaptées à différents niveaux ou échelles, tels que la petite échelle (niveau atomique), la méso-échelle (niveau des particules, des grains et des pores), et l'échelle du continuum (niveau des composants). La capacité et la maitrise de pouvoir prédire l'évolution de la microstructure ont placé le modèle mésoscopique (au niveau des particules, des grains et des pores) devant les autres.Sur le plan recherche, la question posée serait donc "Étant donné une pièce brute obtenue par MExAM, comment simuler numériquement l'évolution de la microstructure (à partir d’un état microstructural initial) pour contrôler les changements dans les propriétés thermomécaniques pendant le processus de frittage à l'état solide ?"Un modèle de calcul robuste, basé sur une approche multiphysique et multiéchèle, a été développé, testé et validé. Il permet la prédiction des évolutions de la microstructure et des grandeurs thermiques et mécaniques du matériau. Le modèle repose sur la méthode des éléments finis et prend en compte de manière progressive les couplages multiphysiques (thermique, mécanique et microstructure) influant sur le comportement du matériau. Un traitement particulier a été étudié pour la prise en compte des phénomènes non linéaires. Les résultats des différentes simulations ont montré que le modèle développé est capable de prédire avec une précision correcte le comportement du processus de frittage. Le cas particulier du comportement du matériau pour le MExAM a été présentée, ainsi que la manière d'utiliser le modèle pour optimiser ses propriétés thermomécaniques. L'optimisation a été réalisée en couplant les résultats des différentes simulations avec la méthode Taguchi. Il faut souligner que les résultats obtenus à partir de l'analyse des propriétés des matériaux témoignent de la réussite de l'application du modèle, tant du point de vue de la prévision du comportement microstructural et thermomécanique du matériau, que du point de vue de l'optimisation de ses propriétés.