Non-convexité symplectique des domaines toriques
Auteur / Autrice : | Julien Dardennes |
Direction : | Jean Gutt |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et Applications |
Date : | Soutenance le 10/06/2024 |
Etablissement(s) : | Université de Toulouse (2023-....) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Institut de mathématiques de Toulouse (2007-....) |
Jury : | Président / Présidente : Jean-François Barraud |
Examinateurs / Examinatrices : Sheila Sandon, Felix Schlenk | |
Rapporteurs / Rapporteuses : Alberto Abbondandolo, Yaron Ostrover |
Mots clés
Résumé
La convexité joue un rôle particulier en géométrie symplectique, pourtant ce n'est pas une notion invariante par symplectomorphisme. Dans un article fondateur, Hofer, Wysocki et Zehnder ont montré que tout domaine fortement convexe est dynamiquement convexe, une notion, qui elle, est invariante par symplectomorphisme. Depuis plus de vingt ans, l'existence ou non de domaines dynamiquement convexes qui ne sont pas symplectomorphes à un convexe est restée une question ouverte. Récemment, Chaidez et Edtmair ont répondu à cette question en dimension 4. Ils ont établi un critère "quantitatif" de convexité symplectique puis ont construit des domaines dynamiquement convexes qui ne vérifient pas ce critère. Dans cette thèse, nous utilisons ce critère pour construire de nouveaux exemples de tels domaines en dimension 4, qui ont la propriété additionnelle d'être torique. De plus, nous estimons les constantes intervenant dans ce critère. Ce travail en collaboration avec Jean Gutt et Jun Zhang a été ensuite utilisé par Chaidez et Edtmair pour résoudre la question initiale en toute dimension. Dans un second temps, en collaboration avec Jean Gutt, Vinicius G.B.Ramos et Jun Zhang, nous étudions la distance des domaines dynamiquement convexes aux domaines symplectiquement convexes. Nous montrons qu'en dimension 4, celle-ci est arbitrairement grande aux yeux d'un analogue symplectique de la distance de Banach-Mazur. Au passage, nous reprouvons de manière indépendante l'existence de domaines dynamiquement convexes non symplectiquement convexes en dimension 4.