Thèse soutenue

Transformations spéciales des quadriques

FR  |  
EN
Auteur / Autrice : Jordi Emanuel Hernandez Gomez
Direction : Mark SpivakovskyMarcello Bernardara
Type : Thèse de doctorat
Discipline(s) : Mathématiques et Applications
Date : Soutenance le 11/06/2024
Etablissement(s) : Université de Toulouse (2023-....)
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Toulouse (2007-....)
Jury : Président / Présidente : Michele Bolognesi
Rapporteur / Rapporteuse : Paolo Stellari

Résumé

FR  |  
EN

Dans cette thèse, nous étudions les transformations birationnelles spéciales des quadriques lisses. Nous obtenons un résultat de classification en dimensions 3 et 4. Dans ces deux cas, nous démontrons qu'il n'existe qu'un seul exemple. Pour la dimension 3, il est défini par le système linéaire de quadriques passant par une courbe rationnelle normale quartique. Pour la dimension 4, il est défini par le système linéaire de cubiques passant par une surface K3 non minimale de degré 10 avec 2 (-1)-droites disjointes qui n'est contenue dans aucune autre quadrique. Le lieu de base de la transformation inverse est en général une surface lisse du même type. De plus, nous montrons que les surfaces K3 correspondantes sont des partenaires de Fourier-Mukai non isomorphes. Ces surfaces sont également liées aux cubiques de dimension 4 spéciales. Plus précisément, nous montrons qu'une cubique générale dans le diviseur de Hassett des cubiques spéciales de discriminante 14 contient une telle surface. Il s'agit du premier exemple d'une famille de surfaces non rationnelles caractérisant les cubiques dans ce diviseur. L'étude des transformations birationnelles spéciales des quadriques est motivée par un exemple décrit par M. Bernardara, E. Fatighenti, L. Manivel, et F. Tanturri, qui ont fourni une liste de 64 nouvelles familles de variétés de Fano de type K3. De nombreux exemples dans leur liste donnent des variétés qui admettent des contractions birationnelles multiples, réalisées comme des éclatements des variétés de Fano le long des surfaces K3 non minimales. La nature des constructions implique que les surfaces K3 ont des catégories dérivées équivalentes. Nous répondons partiellement à la question naturelle : Pour quelles familles les surfaces K3 correspondantes sont-elles isomorphes, et pour quelles familles ne le sont-elles pas ?