Thèse soutenue

Amélioration du diagnostic et du pronostic dans des conditions de données rares et de connaissances limitées par l'apprentissage automatique informé par la physique et auto-supervisé

FR  |  
EN
Auteur / Autrice : Weikun Deng
Direction : Kamal MedjaherThi Phuong Khanh Nguyen
Type : Thèse de doctorat
Discipline(s) : Génie Industriel
Date : Soutenance le 07/11/2024
Etablissement(s) : Université de Toulouse (2023-....)
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Génie de Production (Tarbes ; 1989-....)
Etablissement délivrant conjointement le doctorat : Institut national polytechnique (Toulouse ; 1969-....)
Jury : Président / Présidente : Saïd Noureddine Zerhouni
Examinateurs / Examinatrices : Kamal Medjaher, Thi Phuong Khanh Nguyen, Saïd Noureddine Zerhouni, Enrico Zio
Rapporteur / Rapporteuse : Mitra Fouladirad, Phuc Do Van

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse aborde le défi des « données éparses et des connaissances rares » dans le développement d’un modèle générique de pronostic et de gestion de la santé (PHM). Elle met en lumière l'efficacité des modèles hybrides combinant la modélisation basée sur la physique (PBM) et l'apprentissage automatique (ML), notamment l'apprentissage automatique informé par la physique (PIML) et l'apprentissage auto-supervisé (SSL) pour apprendre à partir de données non étiquetées. La thèse apporte ainsi des contributions significatives aux théories PIML et SSL et à leurs applications pratiques dans le PHM.La première contribution est une solution générique d'architecture et de stratégie d'apprentissage pour le PIML. Diverses approches sont analysées et la théorie mimétique est proposée pour concevoir des neurones et connexions flexibles et physiquement cohérents, aboutissant au Réseau Neuronal Mimétique des Éléments Finis du Rotor (RFEMNN). Le RFEMNN reconnaît efficacement les défauts à travers diverses structures de rotor. Pour améliorer la capacité de diagnostic du RFEMNN avec peu de données, une stratégie d'apprentissage par renforcement alignée avec la physique est proposée. Une architecture générique PIML avec des branches PI et basées sur les données est développée, impliquant un processus en trois étapes : pré-formation de la branche basée sur les données, formation de la branche PI, et formation conjointe. Cette méthode assure des performances supérieures aux modèles basés sur les données dans un contexte de données éparses. De plus, le modèle CNN dilaté utilisant cette approche prédit efficacement la RUL des batteries lithium-ion avec des données de petits cycles. La deuxième contribution est une stratégie SSL pour l'apprentissage à partir de données non étiquetées, introduisant un modèle Siamese CNN-LSTM avec une fonction de perte contrastive personnalisée. Ce modèle extrait des représentations robustes en maximisant les différences dans les mêmes échantillons présentés dans des ordres séquentiels variés. Des tâches en aval sont proposées comme objectifs intermédiaires pour aligner les représentations avec les exigences en aval. Le modèle Siamese CNN-LSTM excelle à prédire la RUL sur le dataset PRONOSTIA et reste stable même avec une augmentation de la rareté des données d'apprentissage.La contribution finale étend les concepts de PIML pour la découverte active des connaissances sur des données non étiquetées et intègre le SSL dans la formation PIML en trois étapes. Une nouvelle structure PI liquide et un modèle PI-CNN-Selective state space model (CNN-SSM) sont développés. Liquid PI introduit des neurones à portes et des connexions liquides qui s'adaptent dynamiquement, acquérant des connaissances physiques grâce à une recherche optimisée. Appliquée dans le suivi du couple des manipulateurs robotisés, cette approche découvre des connaissances en utilisant des opérateurs physiques de base et des poids dynamiques. Le Liquid PI CNN-SSM traite des séquences d'entrée de longueur variable sans prétraitement du signal, optimisant les ressources en nécessitant seulement 600 KB pour gérer 23,9 GB de données. Il atteint des performances de pointe dans des tâches de pronostic mixtes, y compris la dégradation des roulements, l'usure des outils de coupe, le vieillissement des batteries et la fatigue des tubes CFRP. Les travaux futurs appliqueront des lois d'échelle spécifiques au PHM et utiliseront de vastes ensembles de données synthétiques et industrielles pour construire un macro-modèle. Ce modèle pourrait intégrer des capacités de diagnostic et de pronostic avec un traitement de séquence infinie, transformant les méthodologies et les solutions de PHM.