Thèse soutenue

L'adaptation de LSTM aux données collectées à des fréquences irrégulières pour faire des prédictions dans le contexte de la réanimation médicale

FR  |  
EN
Auteur / Autrice : Mamadou Ben Hamidou Cissoko
Direction : Nicolas Lachiche
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 23/10/2024
Etablissement(s) : Strasbourg
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Strasbourg ; 2013-....)
Jury : Président / Présidente : Jonathan Weber
Examinateurs / Examinatrices : Christine Sinoquet
Rapporteur / Rapporteuse : Sandra Bringay, Thomas Guyet

Résumé

FR  |  
EN

En médecine prédictive personnalisée, modéliser avec précision la maladie et les processus de soins d'un patient est crucial en raison des dépendances temporelles à long terme inhérentes. Cependant, les dossiers de santé électroniques (DSE) se composent souvent de données épisodiques et irrégulières, issues des admissions hospitalières sporadiques, créant des schémas uniques pour chaque séjour hospitalier.Par conséquent, la construction d'un modèle prédictif personnalisé nécessite une considération attentive de ces facteurs pour capturer avec précision le parcours de santé du patient et aider à la prise de décision clinique.LSTM sont efficaces pour traiter les données séquentielles comme les DSE, mais ils présentent deux limitations majeures : l'incapacité à interpréter les résultats des prédictions et à prendre en compte des intervalles de temps irréguliers entre les événements consécutifs. Pour surmonter ces limitations, nous introduisons de nouveaux réseaux neuronaux à mémoire dynamique profonde appelés Multi-Way Adaptive et Adaptive Multi-Way Interpretable Time-Aware LSTM (MWTA-LSTM etAMITA), conçus pour les données séquentielles collectées de manière irrégulière.L'objectif principal des deux modèles est de tirer parti des dossiers médicaux pour mémoriser les trajectoires de maladie et les processus de soins, estimer les états de maladie actuels et prédire les risques futurs, offrant ainsi un haut niveau de précision et de pouvoir prédictif.