Aspects des transitions de phase cosmologiques du premier ordre : propagation des enveloppes ultra-relativistes, matière noire lourde et baryogénèse
Auteur / Autrice : | Maximilian Dichtl |
Direction : | Marco Cirelli |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 26/06/2024 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Physique en Île-de-France (Paris ; 2014-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de physique théorique et hautes énergies (Paris ; 1997-....) |
Jury : | Président / Présidente : Sacha Davidson |
Examinateurs / Examinatrices : Julia Harz, Sébastien Renaux | |
Rapporteur / Rapporteuse : Aleksandr Azatov, Djuna Lize Croon |
Mots clés
Résumé
Les transitions de phase du premier ordre (PT) dans l'univers primitif se produisent par la nucléation de bulles dont les parois peuvent se dilater à des vitesses ultra-relativistes. Les interactions du bain thermique à la paroi produisent des particules qui s'accumulent dans des coquilles à la paroi. Les coquilles évoluent jusqu'à ce qu'elles entrent en collision avec celles des bulles voisines. Dans cette thèse, nous étudions d'abord l'évolution de ces coquilles, en incluant pour la première fois les interactions de changement de nombre de la coquille à l'intérieur d'elle-même et avec le bain thermique. En particulier, nous calculons les taux des processus de diffusion 3 → 2 dominants, et nous trouvons qu'ils peuvent être plus importants que tous les autres processus considérés dans la littérature précédente. Nous identifions les régions de l'espace des paramètres du PT où les coquilles sont libres, c'est-à-dire qu'elles ont des interactions négligeables en elles-mêmes et avec le bain. Nous utilisons ensuite ces résultats pour prédire la vitesse et l'énergie avec lesquelles les particules de bulles opposées entrent en collision. Nous constatons que ces collisions de particules peuvent atteindre des énergies de diffusion bien supérieures à l'échelle du PT, qui peuvent à leur tour être utilisées pour produire des particules hautement énergétiques ou des particules bien plus lourdes que l'échelle du PT, réalisant ainsi un ''bubbletron'' cosmologique. À titre d'exemple, nous montrons que l'on peut produire de la matière noire lourde avec des masses supérieures à 10^3 TeV pour des échelles de PT d'environ 10 MeV, et avec des masses supérieures à l'échelle du GUT pour des échelles de PT supérieures à environ 10^9 GeV. Les PT avec des parois ultra-relativistes sont également pertinents pour tout autre processus reposant sur la production de particules hors équilibre. Si l'interaction entre les particules de la coquille viole également le nombre de baryons, C et CP, alors les trois conditions de Sakharov sont remplies et l'on peut utiliser ces PT pour expliquer l'asymétrie des baryons dans l'univers. Pour ce faire, nous proposons un mécanisme de baryogénèse à partir de PT confinants surfondus. Nous calculons également la signature des ondes gravitationnelles dues aux PT dans tous les scénarios susmentionnés. Nous constatons qu'elles pourraient être observées par les réseaux de synchronisation des pulsars et les interféromètres d'ondes gravitationnelles comme LISA et le télescope d'Einstein, établissant ainsi un nouveau lien entre ces télescopes et l'origine possible de la matière noire et de l'asymétrie des baryons dans l'univers.