Avancement des états et mesures non gaussiens - un banc d'essai expérimental pour les réseaux quantiques hétérogènes
Auteur / Autrice : | Beate Elisabeth Asenbeck |
Direction : | Julien Laurat, Damian J. H. Markham |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 28/06/2024 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Physique en Île-de-France (Paris ; 2014-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Kastler Brossel (Paris ; 1998-....) |
Jury : | Président / Présidente : Gwendal Fève |
Examinateurs / Examinatrices : Nadia Belabas | |
Rapporteur / Rapporteuse : Yvonne Gao, Christoph Marquardt |
Mots clés
Résumé
Cette thèse porte sur la création et la manipulation d'états non gaussiens dans le but de tester les réseaux quantiques hétérogènes émergents. Ces réseaux sont envisagés pour héberger de multiples plateformes physiques, connectées par des lignes de communication optiques. Les états optiques utilisés pour cette communication devront être adaptés à l'encodage de la plateforme physique à laquelle ils sont connectés, ce qui conduit à une variété de stratégies d'encodage possibles. Dans ce travail, nous développons des critères pour tester la qualité des différents encodages et des outils de référence qui garantissent un transfert d'informations fidèle. En outre, nous montrons que plusieurs encodages peuvent être utilisés simultanément dans le même réseau quantique sans perdre leurs propriétés quantiques lors de la conversion. Nous utilisons des oscillateurs paramétriques optiques de haute qualité, produisant des états comprimés monomodes ou bimodes. Grâce à des détecteurs à photons uniques supraconducteurs, nous créons deux encodages optiques différents représentant un système à deux niveaux et un oscillateur harmonique. Le système à deux niveaux correspond à des superpositions d'excitations de nombres de photons, tandis que l'état de l'oscillateur harmonique à des chats de Schrödinger optiques. En créant une intrication entre ces deux encodages différents, il est possible de les utiliser dans des protocoles de réseau. Ces derniers sont intrinsèquement limités par le taux de réussite et la fidélité des mesures de l'état de Bell. Nous présentons une amélioration de la fidélité de l'état de sortie et de la projectivité d'une mesure linéaire tout-optique de l'état de Bell en combinant la détection de photons uniques avec la sélection en quadrature du champ. L'utilisation de l'intrication hybride avec cette mesure hybride de l'état de Bell permet de convertir un qubit d'entrée à deux niveaux en son équivalent en oscillateur harmonique dans une configuration basée sur la téléportation. Après une analyse approfondie des résultats de l'expérience du convertisseur, nous développons un critère pour juger de la non-gaussianité des cohérences quantiques. Ce critère est appliqué à deux systèmes à deux niveaux expérimentaux différents. Enfin, des simulations démontrent qu'une future version de l'expérience pourra comprendre de la génération d'états non gaussiens corrigeables d'erreur. Ce travail encourage l'utilisation de plusieurs encodages dans les réseaux quantiques et fait progresser les méthodes de mesure et de création d'états qui élargissent les capacités des systèmes optiques pour la communication quantique.