Rôle de l’aluminium dans la réactivité pouzzolanique des métakaolins, replacé dans le contexte général de la pouzzolanicité pour des ciments à bas taux de CO2
Auteur / Autrice : | Julia Jourdan |
Direction : | Laurence Galoisy, Sandrine Garrault-Gauffinet |
Type : | Thèse de doctorat |
Discipline(s) : | Physique et chimie des matériaux |
Date : | Soutenance le 07/05/2024 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de minéralogie, de physique des matériaux et de cosmochimie (Paris ; 1997-....) |
Jury : | Président / Présidente : Etienne Balan |
Examinateurs / Examinatrices : Cécile Diliberto, Fernando Martirena, Laurent Izoret | |
Rapporteurs / Rapporteuses : Ruben Snellings, Dimitri Deneele |
Mots clés
Mots clés contrôlés
Résumé
La part de l'industrie cimentière représente aujourd'hui environ 8% des émissions mondiales de CO2 provenant principalement du processus de fabrication du clinker de ciment Portland. Une manière de réduire efficacement l'impact environnemental du ciment Portland est donc de diminuer le taux de clinker en utilisant des matériaux à hydraulicité potentielle (MHP) (matériaux pouzzolaniques ou à hydraulicité latente), portant une plus faible part de CO2 et qui, en présence d'eau et de chaux, sont capable de produire des hydrates aux propriétés liantes, tel que le clinker. Dans le cadre de cette thèse, nous nous intéresserons plus particulièrement aux kaolins qui, calcinés, puis combinés au carbonate de calcium, dans les ciments de type LC3, permettent de réduire le taux de clinker à 50% pour des performances similaires au ciment CEM I, grâce à la réactivité pouzzolanique du métakaolin et à l'effet synergique de ce dernier avec le calcaire.La forte réactivité des métakaolins (ou kaolins calcinés) est acquise lors de sa calcination entre 600 et 800°C, au cours de laquelle le kaolin subit d'importantes transformations structurelles avec le passage d'une structure cristallisée (kaolinite) à une structure fortement désordonnée, quasi-amorphe (métakaolinite). De nombreuses études ont mis en évidence les changements de l'environnement local de l'Al au cours de la calcination de la kaolinite, en observant les transitions de l'Al en sites octaédriques de la kaolinite vers des sites de coordinence 5 et 4 dans la métakaolinite. Ce changement de coordinence de l'Al, pourrait être à l'origine de la forte réactivité du métakaolin par rapport au kaolin, ou à d'autres types d'argiles calcinées (illite, montmorillonite, ...), dans lesquelles la présence d'[5]Al n'a pas été mise en évidence. Ainsi, la connaissance du rôle de l'aluminium dans la structure des métakaolins, qui intervient dans la formation des hydrates liants (C-A-S-H, carboaluminates) lors de l'hydratation des ciments LC3, est indispensable pour comprendre leur réactivité. L'objectif de cette thèse est d'une part, de mieux comprendre la structure des métakaolins, et l'influence du processus de calcination sur cette structure, à travers une approche multi-technique (DRX, ATG, FT-IR, …). On s'intéressera plus particulièrement à l'environnement local autour de l'Al en utilisant la RMN-MAS du solide de l'Al27 et la spectroscopie XANES au seuil K de l'Al. Et d'autre part, d'appréhender les relations structure-réactivité et d'identifier le rôle de l'Al dans la réactivité des métakaolins, à partir des essais de réactivité R3 par calorimétrie isotherme et de résistance mécanique sur des ciments de type LC3. Cette étude est menée à partir d'un échantillonnage de différents kaolins calcinés en four flash et en four à moufle à différentes températures.