Thèse soutenue

Manipuler l'effet Faraday inverse par l'utilisation de nanostructures plasmoniques inversement conçues

FR  |  
EN
Auteur / Autrice : Ye Mou
Direction : Mathieu Mivelle
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 24/06/2024
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Institut des nanosciences de Paris (1997-....)
Jury : Président / Présidente : Emmanuelle Deleporte
Examinateurs / Examinatrices : Samuel Grésillon, Nicolas Bonod
Rapporteurs / Rapporteuses : Elizabeth Boer-Duchemin, Davy Gérard

Résumé

FR  |  
EN

L'effet Faraday inverse est un processus magnéto-optique permettant la magnétisation de la matière par une excitation optique porteuse d'un spin non nul de la lumière. Cette interaction lumière-matière dans les métaux à l'échelle nanométrique résulte de la création de courants de dérive via les forces non linéaires que la lumière applique aux électrons de conduction. En particulier, ce phénomène a été considéré jusqu'à présent comme symétrique; les polarisations circulaires droite ou gauche génèrent des champs magnétiques orientés dans la direction de propagation de la lumière ou dans la direction opposée à la propagation. Nous démontrons ici qu'en manipulant localement la densité de spin de la lumière dans des nano-antennes plasmoniques inversement conçues, l'effet Faraday inverse peut être chiral et générer de forts champs magnétiques stationnaires dus aux courants de dérive uniquement pour une hélicité de la lumière entrante; nous démontrons aussi que ce processus magnéto-optique peut avoir sa symétrie inversée, ce qui était considéré comme impossible; et qu'il peut même générer des photocourants de dérive unidirectionnels en tant que nano-source accordable pour un rayonnement THz linéaire. Ce nouveau concept optique de manipulation de l'effet Faraday inverse par des nano-antennes plasmoniques trouve diverses applications dans le contrôle ultrarapide des domaines magnétiques, non seulement dans les technologies de stockage de données ultrarapides, mais aussi dans des domaines de recherche tels que la spectroscopie THz à l'échelle nanométrique, le piégeage magnétique, les skyrmions magnétiques, le dichroïsme circulaire magnétique, la manipulation de matériaux magnétiques, le contrôle du spin, la précession du spin, les courants de spin et les ondes de spin, entre autres.