Symétries et structures de rang faible des matrices et tenseurs pour des problèmes en chimie quantique
Auteur / Autrice : | Siwar Badreddine |
Direction : | Laura Grigori |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 28/03/2024 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Institut national de recherche en informatique et en automatique (France). Centre de recherche de Paris (Paris) |
Jury : | Président / Présidente : Yvon Maday |
Examinateurs / Examinatrices : Eric Cancès, Alex Townsend, Anthony Nouy | |
Rapporteurs / Rapporteuses : Edmond Chow, Bart Vandereycken |
Mots clés
Résumé
Cette thèse présente de nouveaux algorithmes numériques et effectue une étude approfondie de certaines méthodes numériques existantes pour relever les défis de haute dimension résultant de la résolution de l'équation de Schrödinger électronique en chimie quantique. En se concentrant sur deux problèmes spécifiques, notre approche implique l'identification et l'exploitation des symétries et des structures de rang faible au sein de matrices et de tenseurs. Le premier problème abordé dans cette thèse concerne l'évaluation numérique efficace de la composante à longue portée du potentiel de Coulomb à séparation de portée et des intégrales à deux électrons à longue portée, un tenseur du quatrième ordre qui intervient dans de nombreuses méthodes de chimie quantique. Nous présentons deux nouvelles méthodes d'approximation. Cela est réalisé en s'appuyant sur l'interpolation Chebyshev, des règles de quadrature Gaussienne combinées à des approximations de rang faible ainsi que des méthodes rapides multipolaires (FMM). Ce travail offre une explication détaillée de ces approches et algorithmes introduits, accompagnée d'une comparaison approfondie entre les méthodes nouvellement proposées. Le deuxième problème abordé concerne l'exploitation des symétries et des structures de rang faible pour dériver des représentations efficaces en train de tenseurs des opérateurs impliqués dans l'algorithme DMRG. Cet algorithme est une méthode d'optimisation itérative précise utilisée pour résoudre numériquement l'équation de Schrödinger indépendante du temps. Ce travail vise à comprendre et interpréter les résultats obtenus par les communautés de physique et de chimie, et cherche à offrir des perspectives théoriques nouvelles qui, selon nos connaissances, n'ont pas reçu une attention significative auparavant. Nous menons une étude approfondie et fournissons des démonstrations, si nécessaire, pour explorer l'existence d'une représentation particulière en train de tenseurs, creuse par blocs, de l'opérateur Hamiltonien et de sa fonction d'onde associée. Cela est réalisé tout en maintenant les lois de conservation physiques, manifestées sous forme de symétries de groupe dans les tenseurs, telles que la conservation du nombre de particules. La troisième partie de ce travail est dédiée à la réalisation d'une bibliothèque prototype en Julia, pour l'implémentation de DMRG qui est conçue pour le modèle d'opérateur Hamiltonien de la chimie quantique. Nous exploitons ici la représentation en train de tenseurs, creuse par blocs, de l'opérateur et de la fonction d'onde (fonction propre). Avec ces structures, notre objectif est d'accélérer les étapes les plus coûteuses de la DMRG, y compris les contractions de tenseurs, les opérations matrice-vecteur, et la compression de matrices par décomposition en valeurs singulières tronquée. De plus, nous fournissons des résultats issus de diverses simulations moléculaires, tout en comparant les performances de notre bibliothèque avec la bibliothèque ITensors de pointe, où nous démontrons avoir atteint une performance similaire.