Thèse soutenue

Etude théοrique et numérique de l'instabilité interfaciale de ballοttement dans une batterie à métaux liquides

FR  |  
EN
Auteur / Autrice : Antoine Simon
Direction : Christophe Dumouchel
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 09/10/2024
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Laboratoire : Complexe de recherche interprofessionnel en aérothermochimie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1967-....)
Établissement co-accrédité : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Jury : Président / Présidente : Innocent Mutabazi
Examinateurs / Examinatrices : Christophe Dumouchel, Caroline Nore, Christian Ruyer-Quil, Sophie Miralles, Benoît-Joseph Gréa, Marie-Charlotte Renoult, Jorge César Brändle de Motta
Rapporteur / Rapporteuse : Caroline Nore, Christian Ruyer-Quil

Résumé

FR  |  
EN

Les batteries à métaux liquides représentent une solution prometteuse pour le stockage d'énergie stationnaire, notamment dans le contexte de la transition énergétique. Leur composition entièrement liquide et soumise à un fort courant électrique et à une température élevée nécessite une étude approfondie des écoulements internes pour prévenir les risques de court-circuit dus à des instabilités hydrodynamiques. Cette thèse se concentre sur les instabilités interfaciales causées par la redistribution du courant électrique dans des milieux de conductivité électrique différente, pouvant se manifester sous forme d'ondes progressives ou stationnaires. Le défi technique associé à l'étude théorique de ces phénomènes est la complexité des calculs liée à la prise en compte des trois couches fluides, de la viscosité, des effets électromagnétiques et des effets de bords. Dans un premier temps, une analyse linéaire de stabilité a été effectuée pour étudier l'effet de la viscosité et, dans une moindre mesure, de la tension de surface dans un système à trois couches fluides infini soumis au seul champ de gravité. Ce champ de gravité est le moteur de l'instabilité de Rayleigh-Taylor. Cette instabilité ne s'observe pas dans les batteries à métaux liquides qui sont stables gravitationnellement. Cette première étude permet de caractériser le couplage entre les interfaces afin de mieux comprendre des expériences réalisées précédemment. Les résultats montrent que le comportement des interfaces dépend d'un paramètre de couplage : l'épaisseur de la couche du milieu adimensionnée par le nombre d'onde de la perturbation. Des simulations numériques directes réalisées avec le code Archer ont validé la théorie jusqu'à ce que les effets non-linéaires soient significatifs et ont permis d'identifier trois régimes selon la valeur croissante du paramètre de couplage pour un système où l'interface du haut est gravitationnellement stable et l'interface du bas est gravitationnellement instable : la succession de deux régimes couplés, l'un dominé par le comportement d'une onde de gravité, l'autre dominé par le comportement d'une instabilité de Rayleigh-Taylor et d'un régime découplé. Dans un deuxième temps, l'effet du champ magnétique sur les instabilités interfaciales dans un système à trois couches fluides infini a été étudié. L'analyse linéaire de stabilité, étendue pour inclure les trois premières complexités, a permis de cartographier la stabilité du système en fonction d'un champ magnétique adimensionné, prenant en compte le champ magnétique induit par le courant électrique à l'intérieur de la batterie ainsi qu'un éventuel champ magnétique extérieur, et du paramètre de couplage. Un champ magnétique critique a été identifié, dont la valeur dépend des masses volumiques des trois fluides et des tensions de surface des deux interfaces. La viscosité n'a pas d'effet sur cette carte ; elle ralentit les perturbations sans affecter directement la condition de stabilité comme on pouvait s'y attendre. Enfin, dans un troisième temps, les effets de bord et l'influence du champ magnétique dans un système à deux couches fluides ont été étudiés en utilisant une méthode énergétique. Les résultats confirment le critère de stabilité obtenu par Sele pour les cellules de réduction de l'aluminium et posent les bases d'un critère généralisé au cas d'un système fluide à trois couches incluant la viscosité et la tension de surface. De nouvelles simulations numériques directes avec Archer ont montré que le système reste stable lorsque le critère de Sele est respecté, bien que certains comportements des interfaces ne soient pas totalement prédits par la théorie existante, indiquant la nécessité d'approfondir ces recherches.