Thèse soutenue

Insights into transitional supersonic boundary layers : DNS investigations and streak control strategies

FR  |  
EN
Auteur / Autrice : Muhittin Celep
Direction : Abdellah HadjadjMostafa Safdari Shadloo
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides, énergétique, thermique, combustion, acoustique
Date : Soutenance le 01/07/2024
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Laboratoire : Complexe de recherche interprofessionnel en aérothermochimie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1967-....)
Établissement co-accrédité : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Jury : Président / Présidente : Luc Vervisch
Examinateurs / Examinatrices : Abdellah Hadjadj, Mostafa Safdari Shadloo, Guillaume Lehnasch, Olivier Chazot, Taraneh Sayadi
Rapporteurs / Rapporteuses : Guillaume Lehnasch, Olivier Chazot

Résumé

FR  |  
EN

Dans les écoulements à haute vitesse, une traînée visqueuse élevée et des charges thermiques importantes sont des conséquences inhérentes sur les corps aérodynamiques. Ces effets augmentent de manière significative pendant la phase de transition lorsque la couche limite devient turbulente. Afin de réduire les risques de dommages mécaniques et de défaillances liées à la fatigue, des systèmes de protection thermique sont intégrés aux véhicules, ajoutant de la complexité aux aspects techniques et économiques de la conception. La solution réside dans l’acquisition d’une compréhension approfondie des mécanismes de transition et le développement de systèmes de contrôle pour prolonger la couche limite laminaire le long de la surface du véhicule. De nombreuses techniques de contrôle actives et passives peuvent être utilisées pour le contrôle de la transition, parmi lesquelles la méthode de l’emploi de stries émerge comme une approche particulièrement prometteuse. Cette méthode consiste à générer des stries étroitement espacées dans la direction de l’envergure, créant des zones alternées de haute et basse vitesse dans le champ d’écoulement. Bien que la méthode ait été testée récemment dans des écoulements supersoniques, démontrant son efficacité pour retarder la transition, sa pertinence doit être évaluée plus avant. Dans ce travail de recherche, des cas de DNS sont réalisés dans des régimes supersoniques et près-hypersoniques. Les stries sont introduites à l’aide d’une bande de soufflage/aspiration placée sur la paroi avant celle de la perturbation qui est utilisée pour déclencher la transition de manière “contrôlée”, forcée par une perturbation à une seule fréquence et longueur d’onde. L’enquête à Mach 2.0 confirme que les stries avec cinq fois la longueur d’onde fondamentale sont les plus bénéfiques pour le contrôle de la transition. De plus, le refroidissement améliore l’efficacité de la méthode, tandis que le chauffage détériore considérablement la capacité de contrôle des stries. La condition murale isotherme n’altère pas l’impact stabilisateur comparable de la déformation du flux moyen (DFM) et de la partie 3D du contrôle à Mach 2.0. Cependant, à Mach 4.5, tant le type d’instabilité que les caractéristiques des stries changent de manière significative. L’impact stabilisateur de la DFM devient presque absent, et la partie 3D du contrôle prédomine, les caractéristiques des stries n’étant plus considérées comme indépendantes de leur amplitude de perturbation initiale.