Thèse soutenue

Etude et analyse de la régénération des filtres à suie à l'aide de la méthode Lattice Boltzmann

FR  |  
EN
Auteur / Autrice : Claudius Stockinger
Direction : Mostafa Safdari ShadlooAbdellah Hadjadj
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides, énergétique, thermique, combustion, acoustique
Date : Soutenance le 14/06/2024
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Laboratoire : Complexe de recherche interprofessionnel en aérothermochimie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1967-....)
Établissement co-accrédité : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Jury : Président / Présidente : Pascale Domingo
Examinateurs / Examinatrices : Mostafa Safdari Shadloo, Abdellah Hadjadj, Ashwin Chinnayya, Kamel Hooman, Ulrich Nieken, Jonas Latt
Rapporteurs / Rapporteuses : Ashwin Chinnayya, Kamel Hooman

Résumé

FR  |  
EN

La maîtrise des émissions de noir de carbone est une tâche importante dans de nombreux domaines d'application, le secteur des transports étant l'un des domaines les plus importants. Les moteurs diesel, encore largement utilisés dans le monde entier, sont l'une des principales sources d'émissions anthropiques de noir de carbone. Afin de contrer l'effet néfaste du noir de carbone sur la santé humaine, le traitement des gaz d'échappement est au centre de la recherche depuis de nombreuses décennies. Les filtres à suie de pointe utilisent une structure en nid d'abeille en céramique, agissant comme des filtres à flux mur. Ces filtres nécessitent une régénération périodique une fois qu'une contre-pression de filtre critique est atteinte. La régénération est effectuée soit sous forme de régénération active à des températures élevées (>600 °C), soit en continu, sous forme de régénération passive à des températures à partir de 300 °C. La température nécessaire des gaz d'échappement pour la régénération active entraîne une pénalité en carburant, rendant le contrôle précis du processus de régénération impératif. Des travaux antérieurs ont suggéré que la morphologie mésoscopique de la suie et son évolution pendant la combustion de la suie influencent la réactivité, affectant ainsi le processus de régénération. Par conséquent, le contrôle du système de régénération nécessite une connaissance précise des phénomènes physiques et chimiques en jeu, nécessitant des simulations du processus de régénération. Dans cette thèse, un cadre de simulation pour modéliser l'écoulement de gaz, composé des différentes espèces réactives, en tenant compte des interactions solide-gaz, est créé. De plus, le transfert de chaleur conjugué, les réactions hétérogènes et la libération de chaleur de réaction à l'interface entre les phases solide et gazeuse sont traités. À cette fin, la méthode de Boltzmann sur réseau (LBM), en raison de sa nature mésoscopique, est choisie comme un excellent outil pour modéliser la combustion hétérogène à l'échelle des pores. Dans cette thèse, un cadre LBM est créé et des méthodes appropriées pour modéliser la combustion de la suie sont choisies et largement validées. Une procédure d'utilisation des données de microscopie électronique à balayage par faisceau ionique focalisé (FIB-SEM) de véritables échantillons de suie pour la simulation de combustion est mise en œuvre. De plus, les régimes de combustion sont analysés en fonction de la variation du nombre de Péclet, du nombre de Damköhler et de la fraction molaire d'oxygène dans le flux gazeux d'entrée. Des simulations avec des géométries de suie réalistes sont réalisées et les résultats sont comparés avec des résultats expérimentaux. Il est constaté que l'évolution de la surface réactive spécifique, telle que reçue des simulations LBM, n'est pas comparable aux résultats expérimentaux. L'analyse par microscopie électronique à transmission (TEM) et les spectres Raman de la suie avant et après les expériences de combustion ont révélé que la combustion affecte les particules primaires à l'échelle nanométrique. Pour cette raison, un modèle séparé pour décrire les particules primaires hétérogènes et leur combustion a été créé. Ensuite, les premières simulations avec couplage d'échelle ont été menées, en reliant les simulations LBM mésoscopiques avec la conception des particules primaires à l'échelle nanométrique. Il est démontré qu'une augmentation plus réaliste de la surface spécifique peut être obtenue dans les simulations en couplant le modèle LBM mésoscopique avec un modèle de particules primaires à l'échelle nanométrique.