Thèse soutenue

Cosmologie avec les sirènes sombres et populations de binaires de trous noirs avec les ondes gravitationnelles de LIGO-Virgo-KAGRA

FR  |  
EN
Auteur / Autrice : Grégoire Pierra
Direction : Stéphane Perries
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 03/10/2024
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (Lyon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de Physique des 2 Infinis de Lyon
Jury : Président / Présidente : Corinne Augier
Examinateurs / Examinatrices : Nicola Tamanini, Simone Mastrogiovanni, Florent Robinet, Danièle Steer
Rapporteur / Rapporteuse : Nicola Tamanini, Astrid Lamberts-Marcade

Résumé

FR  |  
EN

Les ondes gravitationnelles constituent une nouvelle sonde pour explorer l’Univers et étudier des phénomènes cosmiques jusque-là inaccessibles. Cette thèse se base sur des données d’ondes gravitationnelles récoltées par les détecteurs de la collaboration scientifique LIGO-Virgo-KAGRA. La première partie de ce travail porte sur la cosmologie avec les sirènes sombres, une méthode qui utilise les fusions de trous noirs pour mesurer les distances cosmologiques et inférer la valeur de la constante de Hubble, sans nécessiter de contrepartie électromagnétique. Elle présente également ICAROGW, un code d’inférence bayésienne hiérarchique, utilisant les données d’ondes gravitationnelles et des modèles décrivant les propriétés astrophysiques des trous noirs, comme leurs masses, leurs distances ou encore leurs spins, pour mesurer la constante de Hubble. La deuxième partie de cette étude teste particulièrement la robustesse des sirènes sombres pour la cosmologie. Elle explore l’impact des modèles de population de trous noirs sur l’estimation de la constante de Hubble, tout particulièrement lorsque certains processus astrophysiques ne sont pas modélisés. La troisième partie s’attache à la recherche et à l’identification de sous-populations de binaires de trous noirs dans l’univers. Elle examine la manière dont différents canaux de formation peuvent influencer les caractéristiques intrinsèques de ces objets compacts, notamment à travers les corrélations potentielles entre leur masse et leur spin. L’existence de ces corrélations serait révélatrice de la présence de sous-populations de trous noirs, comme les trous noirs hiérarchiques issus de coalescences précédentes. Enfin, le manuscrit se termine par une étude sur l’utilisation de méthodes de machine learning pour améliorer la qualité des données de l’interféromètre Virgo et détecter la présence de bruits non-gaussiens. Ces travaux explorent également l’intégration potentielle des résultats d’iDQ dans les algorithmes de détection des signaux d’ondes gravitationnelles, visant ainsi à renforcer le niveau de confiance dans ces détections.