Cellules photo-électrochimiques pour la production d'H2 vert : une contribution aux études de mise à l'échelle
Auteur / Autrice : | Angela Maragno |
Direction : | Sophie Charton |
Type : | Thèse de doctorat |
Discipline(s) : | Génie des procédés |
Date : | Soutenance le 12/03/2024 |
Etablissement(s) : | Lyon 1 |
Ecole(s) doctorale(s) : | École doctorale de Chimie (Lyon ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Automatique, de Génie des Procédés et de génie Pharmaceutique (Lyon) |
Jury : | Président / Présidente : Mélaz Tayakout |
Examinateurs / Examinatrices : Sophie Charton, Stefania Specchia, Sophia Haussener, Vincent Artero, Fabrice Gros | |
Rapporteur / Rapporteuse : Stefania Specchia, Sophia Haussener |
Résumé
Mon projet de thèse porte sur l'étude comparative de deux concepts de générateurs de carburant solaire : une cellule PEC basée sur une photoanode de vanadate de bismuth (BiVO4), et une cellule intégrée (IPEC) combinant une cellule solaire à un cellule d’électrolyse. Les deux dispositifs réalisent le processus de photosynthèse artificielle consistant à capturer l'énergie solaire et à la stocker dans les liaisons chimiques. L’objectif de mes travaux est d'identifier les verrous au déploiement à grande échelle de ces dispositifs photo-électrochimiques et de proposer des solutions pour les lever. Deux questions scientifiques sont en particulier au cœur de mes travaux de recherche: 1. Quel est l’impact des hétérogénéités, inhérentes aux procédés d’élaboration à grande échelle des matériaux photo-actifs, sur leurs performances ? 2. Quel rôle peut jouer l’intégration dans la transposition, à l’échelle pilote, des performances obtenues en laboratoire ? Pour répondre à la 1ère question j’ai mis en place une étude paramétrique expérimentale sur des photo-anodes à base de BiVO4, un matériau modèle pour la photosynthèse artificielle. En parallèle, afin de répondre à la 2ème question, j’ai réalisé et testé une cellule IPEC : la combinaison d'une cellule solaire tandem PK/Si et d'un électrolyseur à membrane échangeuse de protons. Dans une deuxième étape, cette démarche a été poursuivie par la conception d’un module monolithique original, intégrant 9 cellules IPEC. La réalisation de 5 de ces modules a permis l’assemblage du démonstrateur EASI Fuel (European Autonomous Solar Integrated fuel station) pour la conversion continue d’hydrogène (produit sous ensoleillement par les IPEC) et du CO2, en CH4 au sein d’un bioréacteur de méthanation. Grace à ce couplage innovant, le prototype EASI Fuel a été sélectionné et testé avec succès pendant 72h en continu et en totale autonomie, lors de la finale du concours Horizon Prize - Fuel from the Sun: Artificial Photosynthesis, qui s'est déroulée à la fin du 2ème année de thèse.