Recherche heuristique exacte et anytime pour résoudre le Voyageur de commerce dépendant du temps avec fenêtres temporelles
Auteur / Autrice : | Romain Fontaine |
Direction : | Jilles Steeve Dibangoye, Christine Solnon |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 09/07/2024 |
Etablissement(s) : | Lyon, INSA |
Ecole(s) doctorale(s) : | École doctorale InfoMaths (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Membre de : Université de Lyon (2015-....) |
Laboratoire : CITI - Centre d'Innovation en Télécommunications et Intégration de services (Lyon, INSA) - CITI Centre of Innovation in Telecommunications and Integration of services / CITI | |
Equipe de recherche : CHROMA - Robots coopératifs et adaptés à la présence humaine en environnements | |
Jury : | Président / Présidente : Romain Billot |
Examinateurs / Examinatrices : Jilles Steeve Dibangoye, Christine Solnon, Romain Billot, Cédric Pralet, Pierre Schaus | |
Rapporteurs / Rapporteuses : Cédric Pralet, Pierre Schaus |
Mots clés
Mots clés contrôlés
Résumé
Le problème du voyageur de commerce (TSP, pour Traveling Salesman Problem) dépendant du temps (TD, pour Time Dependent) est une généralisation du TSP qui permet de prendre en compte les conditions de trafic lors de la planification de tournées en milieu urbain : les temps de trajet varient en fonction des horaires de départ au lieu d'être constants. Le TD-TSPTW généralise ce problème en associant à chaque point de passage une fenêtre temporelle (TW, pour Time Window) qui restreint les horaires de visite. Les approches de résolution exactes telles que la programmation linéaire en nombres entiers ou la programmation dynamique passent mal à l’échelle, tandis que les approches heuristiques ne garantissent pas la qualité des solutions obtenues. Dans cette thèse, nous proposons une nouvelle approche exacte et anytime pour le TD-TSPTW visant à obtenir rapidement des solutions approchées puis à les améliorer progressivement jusqu'à prouver leur optimalité. Nous montrons d'abord comment rapporter le TD-TSPTW à une recherche de meilleur chemin dans un graphe états-transitions. Nous décrivons ensuite des algorithmes permettant de résoudre ce problème en nous concentrant sur les extensions exactes et anytime d'A*, et en proposons une nouvelle par hybridation. Nous montrons comment combiner ces algorithmes avec de la recherche locale -- afin de trouver plus rapidement de meilleures solutions -- ainsi qu'avec des bornes et de la propagation de contraintes de TW -- afin de réduire la taille de l'espace de recherche. Enfin, nous fournissons des résultats expérimentaux visant à (i) valider nos principaux choix de conception, (ii) comparer notre approche à l'état de l'art en considérant des benchmarks ayant différents degrés de réalisme et différentes granularités temporelles et (iii) comparer ces approches TD à de récents solveurs pour le TSPTW dans le cas constant. Ces résultats montrent que notre approche apporte un bon compromis entre le temps nécessaire pour (i) trouver de bonnes solutions et (ii) trouver des solutions optimales et prouver leur optimalité, aussi bien dans le cas TD que dans le cas constant.