Thèse soutenue

Identification et simulation de systèmes physique par apprentissage profond structuré et connaissance inductive

FR  |  
EN
Auteur / Autrice : Steeven Janny
Direction : Julie Digne
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 16/01/2024
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Membre de : Université de Lyon (2015-....)
Laboratoire : Laboratoire d'InfoRmatique en Images et Systèmes d'information (Ecully, Rhône ; 2003-....) - Laboratoire d'InfoRmatique en Image et Systèmes d'information / LIRIS
Equipe de recherche : imagine - Extraction de Caractéristiques et Identification
Jury : Président / Présidente : Amaury Habrard
Examinateurs / Examinatrices : Julie Digne, Amaury Habrard, Florent Di Meglio, Patrick Gallinari, Christian Wolf, Nicolas Mansard, Madiha Nadri, Nils Thuerey
Rapporteur / Rapporteuse : Florent Di Meglio, Patrick Gallinari

Résumé

FR  |  
EN

Les progrès technologiques de notre époque sont soutenus par la disponibilité croissante d’outils numériques pour simuler, contrôler et observer les systèmes physiques. En se concentrant sur des phénomènes de plus en plus complexes, nos outils conventionnels ne parviennent pas à répondre aux attentes croissantes des ingénieurs, que ce soit en termes de précision ou de temps de calcul. Les approches data-driven, en particulier les réseaux de neurones, offrent des alternatives prometteuses pour résoudre ces problèmes. Ces types de modèles capturent des relations complexes et non linéaires dans les systèmes physiques et déplacent la charge de modélisation vers celle de la collecte de données. Cependant, ces nouvelles méthodes sacrifient souvent les critères de stabilité, de robustesse et de précision et plus généralement les garanties offertes par les approches traditionnelles. Nous proposons de combiner les domaines de la physique, de l'apprentissage profond et de la théorie du contrôle pour proposer de nouvelles méthodes hybrides, tirant parti de la puissance des réseaux de neurones, tout en s'appuyant sur des biais inductifs issus de la physique. Ce manuscrit présente nos travaux dans ce domaine. En particulier, il décrit des outils théoriques (abordés dans la partie 1) liés à la simulation de systèmes dynamiques et les connecte à la conception de réseaux neuronaux. Dans un deuxième temps (Partie 2), nous exploitons ces connaissances pour concevoir des algorithmes de contrôle et des techniques de simulation impliquant la résolution de problèmes complexes liés aux équations aux dérivées partielles. Enfin, dans la troisième partie, nous abordons des problèmes de simulation à plus grande échelle tels que la dynamique des fluides et le raisonnement contrefactuel. Nos travaux ont été présentés lors de conférences scientifiques dans le domaine de l'intelligence artificielle et de la théorie du contrôle. En construisant un pont entre la physique et l’apprentissage automatique, nous croyons fermement que cette direction de recherche peut contribuer à une nouvelle génération de méthodologies pour la simulation et le contrôle des systèmes physiques.