Thèse soutenue

Des spectres à l'énergie totale : au-delà de l'approximation GW pour concevoir des interactions effectives.

FR  |  
EN
Auteur / Autrice : Abdallah El sahili
Direction : Lucia ReiningFrancesco Sottile
Type : Thèse de doctorat
Discipline(s) : Physique de la matière condensée
Date : Soutenance le 26/01/2024
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire des solides irradiés (Palaiseau, Essonne) - Laboratoire des Solides Irradiés - Irradiated Solids Laboratory / LSI
Jury : Président / Présidente : Fabien Bruneval
Examinateurs / Examinatrices : Lucia Reining, Francesco Sottile, Pina Romaniello, Mark Van Schilfgaarde, Roberta Poloni, Fabio Caruso
Rapporteurs / Rapporteuses : Pina Romaniello, Mark Van Schilfgaarde

Résumé

FR  |  
EN

Le monde qui nous entoure est composé de systèmes à nombreuses particules interagissantes, ce qui est essentiel pour comprendre la nature de notre réalité. Tout au long de l'histoire de l'humanité, de nombreux efforts ont été déployés pour atteindre cet objectif, avec des conséquences qui ont eu un impact sur les avancées technologiques qui façonnent notre vie moderne. Dans cette thèse, qui se spécialise dans la physique de la matière condensée, nous cherchons à comprendre les systèmes d'électrons interagissants à la base des propriétés électroniques. Nos efforts se concentrent en particulier sur le calcul de l'énergie totale de l'état fondamental (E0). Le principal obstacle, à savoir les énormes fonctions d'onde à plusieurs corps qui ne peuvent être calculées que pour un petit nombre d'électrons, est surmonté par les théories actuellement disponibles telles que la théorie de la fonctionnelle de la densité (DFT) et la théorie de la perturbation à plusieurs corps (MBPT). Ces théories expriment les observables en termes de quantités plus compactes, telles que la densité de charge et la fonction de Green à une particule (GF). Cependant, les expressions exactes et/ou la densité et la GF elles-mêmes ne sont souvent pas connues. Un exemple important est l’E0, dont l'expression est inconnue en termes de la densité. En revanche, E0 peut être écrit exactement en termes de la GF. Il en va de même pour les fonctions spectrales qui peuvent être mesurées en photoémission et photoémission inverse. Cependant, la GF exacte, qui dépend de la self-energie exacte, est inconnue et le besoin d'approximations à la GF elle-même a un impact significatif sur la qualité des résultats. Néanmoins, le cadre des fonctions de Green bénéficie de l'existence d'approximations puissantes. En particulier, la MBPT suggère une façon de développer la self-energie sous forme de diagrammes ayant une signification physique. Pour les situations qui présentent des effets d'interaction faibles à modérés, la MBPT est souvent considérée comme une méthode systématique à suivre, bien que dans la pratique, des renormalisations, telles que l’écrantage de l'interaction de Coulomb, soient nécessaires. En particulier, même le plus bas ordre d'une expansion de la self-energie en termes de l'interaction de Coulomb écrantée W, qui est l'approximation GW largement utilisée, a été très performant pour le calcul de la partie quasi-particule dans les fonctions spectrales dans des systèmes finis ou étendus. Cependant, l'approximation GW présente certaines lacunes, telles qu'une erreur d'auto-écrantage et une violation de contraintes exactes. De plus, sa bonne performance est limitée à certains matériaux où la force de corrélation se situe dans un régime faible à modéré, tandis que les systèmes fortement corrélés restent inaccessibles à l’approximation GW. Dans cette thèse, nous proposons trois méthodes différentes pour aller au-delà du GW afin d'améliorer le calcul de l’énergie totale de l'état fondamental. La première méthode comprend des corrections de la self-energie en combinant la DFT dépendante du temps (TDDFT) avec la MBPT. Avec ces corrections, la self-energie est toujours approximée. Cependant, nous montrons que la contribution d’échange-corrélation exacte à E0 peut être obtenue exactement en utilisant cette self-energie approximée à condition que les ingrédients soient combinés de manière cohérente. La deuxième méthode se base sur le développement de la self-energie en termes de W. Nous avons étudié la convergence de la MBPT et exploré quel W est le meilleur choix dans ce développement. La troisième méthode tient compte de l'utilisation de contraintes exactes, qui peuvent être utilisées pour ajouter des corrections au-delà de la GW à un coût informatique négligeable. Nos résultats sont illustrés en utilisant le dimère de Hubbard symétrique à un et deux électrons. Nous fournissons un code informatique pour ce projet qui sera disponible en ligne à la fin de la thèse.