Thèse soutenue

Communications quantiques multimodes et cryptographie hybride

FR  |  
EN
Auteur / Autrice : Francesco Mazzoncini
Direction : Romain AlléaumeSylvain Gigan
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 18/06/2024
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....) - Laboratoire de Traitement et Communication de l'Information
Etablissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....)
Jury : Président / Présidente : Eleni Diamanti
Examinateurs / Examinatrices : Eleni Diamanti, Norbert Lütkenhaus, Renato Renner, Sophie Laplante, Hugo Defienne
Rapporteurs / Rapporteuses : Norbert Lütkenhaus, Renato Renner

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La cryptographie quantique a été largement définie comme une forme novatrice de cryptographie ne reposant sur aucune hypothèse de difficulté computationnelle. Cependant, avec l'évolution du domaine, et en particulier alors que la distribution quantique de clé (QKD) atteint des niveaux élevés de préparation technologique, il semble qu'il faille trouver un équilibre critique. D'une part, il y a la quête du niveau de sécurité théorique le plus élevé. D'autre part, une seconde direction consiste à optimiser la sécurité et la performance pour une utilisation réelle, tout en offrant un avantage par rapport à la cryptographie classique. Dans cette thèse, nous avons exploré de nouvelles voies vers cette seconde direction, à savoir la cryptographie quantique en conditions réelles.Dans le premier projet, nous défendons un message simple mais puissant : les attaques les plus dangereuses contre la QKD, pour lesquelles le développement de contre-mesures est crucial, sont les plus faciles à mettre en œuvre. Par conséquent, nous effectuons une évaluation de la vulnérabilité d'un dispositif de QKD à variables continues, proposant une nouvelle méthodologie pour la certification de sécurité basée sur le classement des attaques.Dans le deuxième projet, nous introduisons une construction explicite pour un protocole de distribution de clés dans le modèle de sécurité Quantum Computational Timelock (QCT), où l'on suppose que le chiffrement sécurisé computationnellement ne peut être rompu qu'après un temps bien plus long que le temps de cohérence des mémoires quantiques disponibles. En tirant parti des hypothèses QCT, nous construisons un protocole de distribution de clés basé sur le problème de Hidden Matching, pour lequel il existe un écart exponentiel en complexité de communication unidirectionnelle entre les stratégies classiques et quantiques. En particulier, en exploitant cet écart exponentiel, nous débloquons la possibilité d'envoyer plusieurs copies du même état pour réaliser un établissement de clé sécurisé à long terme avec des performances qui vont au-delà de la QKD standard.En nous appuyant sur notre travail théorique sur l'établissement de clés, dont la sécurité et l'efficacité reposent sur la capacité des deux parties à résoudre un problème de complexité de communication quantique plus efficacement que ce qui est possible classiquement, dans le dernier projet expérimental, nous étudions la faisabilité de démontrer un avantage quantique en complexité de communication. En particulier, nous exploitons le mélange de modes complexe inhérent aux fibres multimodes en employant des techniques de wavefront shaping pour aborder les problèmes de complexité de communication quantique.