Thèse soutenue

Confiance déplacée dans l'IA : le paradoxe de l'explication et l'approche centrée sur l'homme. Une caractérisation des défis cognitifs pour faire confiance de manière appropriée aux décisions algorithmiques et applications dans le secteur financier

FR  |  
EN
Auteur / Autrice : Astrid Bertrand
Direction : Winston MaxwellJames Eagan
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 21/05/2024
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....) - Laboratoire de Traitement et Communication de l'Information
Etablissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....)
Jury : Président / Présidente : Alexandre De Streel
Examinateurs / Examinatrices : Alexandre De Streel, Timothy Miller, Fosca Giannotti, Nadia Boukhelifa
Rapporteurs / Rapporteuses : Timothy Miller, Fosca Giannotti

Résumé

FR  |  
EN

L'IA devenant de plus en plus présente dans nos vies, nous sommes soucieux de comprendrele fonctionnement de ces structures opaques. Pour répondre à cette demande, le domaine de la recherche en explicabilité (XAI) s'est considérablement développé au cours des dernières années. Cependant, peu de travaux ont étudié le besoin en explicabilité des régulateurs ou des consommateurs à la lumière d'exigences légales en matière d'explications. Cette thèse s'attache à comprendre le rôle des explications pour permettre la conformité réglementaire des systèmes améliorés par l'IA dans des applications financières. La première partie passe en revue le défi de prendre en compte les biais cognitifs de l'homme dans les explications des systèmes d'IA. L'analyse fournit plusieurs pistes pour mieux aligner les solutions d'explicabilité sur les processus cognitifs des individus, notamment en concevant des explications plus interactives. Elle présente ensuite une taxonomie des différentes façons d'interagir avec les solutions d'explicabilité. La deuxième partie se concentre sur des contextes financiers précis. Une étude porte sur les systèmes de recommandation et de souscription en ligne de contrats d'assurance-vie. L'étude souligne que les explications présentées dans ce contexte n'améliorent pas de manière significative la compréhension de la recommandation par les utilisateurs non experts. Elles ne suscitent pas davantage la confiance des utilisateurs que si aucune explication n'était fournie. Une autre étude analyse les besoins des régulateurs en matière d'explication dans le cadre de la lutte contre le blanchiment d'argent et le financement du terrorisme. Elle constate que les autorités de contrôle ont besoin d'explications pour établir le caractère répréhensible des cas de défaillance échantillonnés, ou pour vérifier et contester la bonne compréhension de l'IA par les banques.