Thèse soutenue

Sensibilité du bilan de masse des glaciers de la partie orientale de l'Himalaya central (Népal oriental) aux variations de la température de l'air et des précipitations

FR  |  
EN
Auteur / Autrice : Arbindra Khadka
Direction : Patrick WagnonFanny Brun
Type : Thèse de doctorat
Discipline(s) : Sciences de la terre et de l'univers, et de l'environnement
Date : Soutenance le 20/06/2024
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale Sciences de la Terre de l'Environnement et des Planètes
Partenaire(s) de recherche : Laboratoire : Institut des géosciences de l'environnement (Grenoble)
Jury : Président / Présidente : Delphine Six
Examinateurs / Examinatrices : Patrick Wagnon, Koji Fujita, Deepak Aryal
Rapporteurs / Rapporteuses : Fabien Maussion, Tobias Sauter

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les glaciers, la neige et le pergélisol contribuent à l'alimentation en eau douce de millions de personnes en Himalaya. Au cours des dernières décennies, les glaciers himalayens ont largement perdu de la masse. Cependant, les études concernant la météorologie locale, le climat ou les glaciers de cette région restent limitées par le manque d'observations à haute altitude.Dans cette thèse, nous profitons de la longue série d'observations météorologiques et glaciologiques collectées dans le bassin supérieur de la Dudh Koshi (région de l'Everest) et sur le glacier Mera depuis 2007, pour évaluer la performance des réanalyses ERA5 Land et HARv2 et pour estimer la sensibilité du bilan de masse du Mera aux variables météorologiques. Dans la première partie, nous avons analysé en détail les données météorologiques. Nous observons un gradient horizontal négatif des précipitations annuelles le long d'un axe sud-nord au travers de la chaîne, avec une diminution de 28 % des précipitations à ~5000 m d'altitude entre le Mera et l'observatoire Pyramid, ~30 km plus au nord. La comparaison des données ERA5 Land et HARv2 avec les données in situ montre que les réanalyses sont capables de résoudre les processus atmosphériques à méso-échelle, HARv2 étant légèrement plus performant qu'ERA5-Land. En raison de la topographie complexe, ces réanalyses ne parviennent cependant pas à reproduire les processus locaux, surtout pour les variables présentant une forte variabilité spatiale comme les précipitations ou la vitesse du vent. La température de l'air est la variable la mieux estimée par les réanalyses, à condition qu'un gradient d'altitude approprié soit utilisé pour l'extrapoler verticalement. Un biais froid est toujours observé, mais il est atténué sur les glaciers blancs. Le contenu en eau de l'atmosphère est bien représenté par les réanalyses, bien que nous observions un léger biais humide et une surestimation spectaculaire des précipitations pendant la mousson (juin à septembre). En ce qui concerne le rayonnement incident courte ou grande longueur d'onde, l'accord entre les données observées et réanalysées dépend de la différence d'altitude entre la station et la grille de la réanalyse. La saisonnalité de la vitesse du vent n'est reproduite que par HARv2. Les jeux de données ERA5-Land et HARv2 sont utilisables dans les études sur le bilan de masse et d'énergie des glaciers, à condition que des méthodes de descente d'échelle statistique ou dynamique soient utilisées pour résoudre la discordance d'échelle entre données grillées et ponctuelles.Dans la deuxième partie, nous estimons la sensibilité du bilan de masse du glacier Mera à la température et aux précipitations. Nous simulons le bilan de masse du glacier Mera à l'aide du modèle distribué COSIPY (Coupled Snowpack and Ice surface energy and mass balance model in Python), nourri par des données météorologiques in situ, de 2016 à 2020. Les flux radiatifs représentent la quasi-totalité de l'énergie disponible pendant la saison de fonte (mai à octobre). À l'échelle annuelle, la fonte est le flux de masse dominant à toutes les altitudes, mais 44 % de l'eau fondue regèle. La sublimation, même si elle est négligeable pendant la mousson, est un autre facteur important et contribue à 23 % du bilan de masse annuel. En remaniant les observations disponibles, nous créons 180 scénarios de forçages météorologiques pour forcer le modèle sur une large gamme de conditions climatiques réalistes. Un changement de température de +1 (-1) °C se traduit par une variation du bilan de masse du glacier de -0.75 ± 0.17 (+0.93 ± 0.18) m équivalent eau (m eq. e.) et un changement de +20 (-20) % dans les précipitations entraîne une variation de +0.52 ± 0.10 (-0.60 ± 0.11) m eq. e. Il est nécessaire de produire des forçages de données cohérents pour évaluer la sensibilité des bilans de masse glaciaires, et cela est possible que si des observations sont disponibles sur le long terme.