Calcul par réservoir sur la plateforme de niobate de lithium sur isolant
Auteur / Autrice : | Mohab Sameh Mohamed Abdalla |
Direction : | Ian O'Connor, Elena Ioana Vatajelu, Fabio Pavanello, Andreas Boes |
Type : | Thèse de doctorat |
Discipline(s) : | Électronique, micro et nanoélectronique, optique et laser |
Date : | Soutenance le 16/12/2024 |
Etablissement(s) : | Ecully, Ecole centrale de Lyon en cotutelle avec RMIT University (Melbourne) |
Ecole(s) doctorale(s) : | École doctorale Électronique, électrotechnique, automatique (Lyon) |
Partenaire(s) de recherche : | Laboratoire : Institut des Nanotechnologies de Lyon (Ecully, Rhône) |
Jury : | Président / Présidente : Lorena Anghel |
Examinateurs / Examinatrices : Ian O'Connor, Elena Ioana Vatajelu, Fabio Pavanello, Andreas Boes, Arnan Mitchell | |
Rapporteur / Rapporteuse : Guy Van der Sande, Damien Querlioz |
Mots clés
Mots clés contrôlés
Résumé
Cette étude concerne le calcul par réservoir à retard temporel, en anglais Time-Delay Reservoir Computing (TDRC) dans les plateformes de photonique intégré, en particulier la plateforme Lithium Niobate On Insulator (LNOI). Nous proposons une nouvelle architecture intégrée « tout optique », avec seulement un déphaseur comme paramètre modifiable pouvant atteindre de bonnes performances sur plusieurs tâches de référence de calcul par réservoir. Nous étudions également l'espace de conception de cette architecture et le fonctionnement asynchrone du TDRC, qui s'écarte du cadre plus courant consistant à envisager les ordinateurs TDRC comme des réseaux. En outre, nous suggérons d'exploiter le schéma tout optique pour se passer du masque d'entrée, ce qui permet de contourner la conversion Optique/Electronique/Optique (O/E/O), souvent nécessaire pour appliquer le masque dans les architectures TDRC. Dans des travaux futurs, cela pourra permettre le traitement de signaux entrants en temps réel, éventuellement pour des applications de télécommunication de pointe. Les effets de la lecture électronique de sortie sur cette architecture sont également étudiés. Aussi, nous suggérons d'utiliser la corrélation de Pearson comme une métrique nous permettant de concevoir un réservoir capable de traiter plusieurs tâches en même temps sur le même signal entrant (et éventuellement sur des signaux dans des canaux différents). Les premiers travaux expérimentaux menés à l'université RMIT sont également présentés. Par ces travaux, nous voulons étudier la performance de ces nouvelles architectures TDRC tout en ayant minimisant la complexité du matériel photonique. Pour cela on s’appuiera principalement sur les faibles pertes du LNOI qui permettent l'intégration du guide d'onde de rétroaction, et en utilisant uniquement l'interférence et la conversion d'intensité à la sortie (par le biais d'un photodétecteur) en tant que non-linéarité. Cela constitue une base sur laquelle pourront s’appuyer de futurs travaux étudiant les gains de performance lorsque des non-linéarités supplémentaires sont prises en compte (telles que celles de la plateforme LNOI) et lorsque la complexité globale du système augmente par l'introduction d'un plus grand nombre de paramètres. Ces travaux portent donc sur l'exploration d'une approche informatique non conventionnelle particulière (TDRC), utilisant une technologie particulière (la photonique intégrée), sur une plateforme particulière (LNOI). Ces travaux s'appuient sur l'intérêt croissant pour l'informatique non conventionnelle puisqu'il a été démontré au fil des ans que les ordinateurs numériques ne peuvent plus être une solution unique, en particulier pour les applications émergentes telles que l'intelligence artificielle (IA). Le paysage futur de l'informatique englobera probablement une grande variété de paradigmes informatiques, d'architectures et de hardware, afin de répondre aux besoins d'applications spécialisées croissantes, tout en coexistant avec les ordinateurs numériques qui restent - du moins pour l'instant - mieux adaptés à l'informatique à usage général.