Thèse soutenue

Analyse expérimentale et numérique des écoulements transitoires rapides en présence d’obstacles

FR  |  
EN
Auteur / Autrice : Filippo Bentivegna
Direction : Christophe CorreAlberto BeccantiniPascal Galon
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 19/07/2024
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : École Doctorale Mécanique, Energétique, Génie Civil, Acoustique (MEGA)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône)
Jury : Président / Présidente : Jean-Philippe Matas
Examinateurs / Examinatrices : Christophe Corre, Alberto Beccantini, Pascal Galon, Vincent Faucher
Rapporteur / Rapporteuse : Éric Goncalves, Annalisa Manera

Résumé

FR  |  
EN

Cette thèse de doctorat explore la dynamique de propagation des ondes de détente dans les circuits de réacteurs nucléaires, en se concentrant sur une configuration représentative d'un scénario de type Accident par Perte de Réfrigérant Primaire (APRP) dans les Réacteurs à Eau Pressurisée (REP). L'étude examine les charges de pression transitoires sur les structures internes, en particulier le cloisonnement du cœur du réacteur, induites par les ondes de détente générées par la rupture brutale et totale (rupture guillotine) d'une des tuyauteries du circuit primaire de refroidissement du REP. Cette analyse est menée en combinant des mesures expérimentales sur un banc d'essai de géométrie simplifiée mais représentatif du scénario APRP et des simulations numériques. Ces simulations sont réalisées en faisant appel à une hiérarchie de modèles numériques: 1D, 2D axisymétriques et 3D, avec ou sans prise en compte des mécanismes d'interaction fluide-structure. Les modèles 1D incluent des représentations simplifiées ou modèles d'impédance des obstacles présents dans l'écoulement, indispensables pour réduire les coûts de simulation de la propagation des ondes au travers d'un circuit complet. Ces obstacles sont des diaphragmes de diamètre et d'épaisseur variables, représentatifs des singularités géométriques présentes dans les circuits parcourus par les ondes de détente. La comparaison calcul/expérience permet d'évaluer le potentiel prédictif des différentes stratégies mises en oeuvre. Le Chapitre 1 introductif du mémoire détaille le contexte et la motivation de l'étude menée en mettant en évidence l'importance d'une compréhension approfondie des phénomènes physiques associés au scénario APRP et la nécessité de modèles simplifiés pour simuler l'écoulement de fluides dans les géométries complexes d'un REP. Une revue de la littérature récapitule les principaux travaux dans l'analyse par voie numérique des réacteurs nucléaires et les simulations d'écoulement transitoire. Une anlyse des approches numériques développées pour la propagation d'ondes en présence d'obstacles avec description simplifiée est également menée pour des applications hors contexte nucléaire. Les Chapitres 2 et 3 présentent respectivement i) la plateforme expérimentale MADMAX utilisée pour produire les mesures de référence ainsi que l'évolution de ses configurations au cours de la thèse, ii) les modèles disponibles au sein du logiciel EUROPLEXUS et utilisés pour mener les simulations numériques des configurations étudiées expérimentalement. Le Chapitre 4 détaille les résultats des expériences et des simulations de la propagation des ondes de détente à travers un unique diaphragme de géométrie modulaire. L'impact de la géométrie des obstacles sur la propagation des ondes est analysé et les capacités prédictives de modèles numériques de complexité (et de coût) variable sont évaluées pour cette configuration de base. Le Chapitre 5 élargit l'analyse à la configuration complète de MADMAX, incorporant une conduite de dérivation avec plusieurs diaphragmes positionnés dans cette conduite. La comparaison détaillée des données expérimentales et des résultats des simulations révéle un bon accord dans la capture du comportement transitoire et des différentiels de pression entre les conduites du cœur et de la dérivation. Des configurations alternatives de MADMAX sont explorées dans le Chapitre 6, mettant en évidence les effets de variation du nombre des diaphragmes et de leur emplacement. Les expériences sur la plateforme MADMAX et les simulations EUROPLEXUS réalisées dans le présent travail contribuent à une meilleure compréhension des phénomènes d'écoulement transitoire dans les circuits de réacteurs nucléaires. [...]