Le rôle de la poussière carbonée dans le milieu interstellaire en tant que catalyseur pour la formation de molécules et la croissance des grains
Auteur / Autrice : | Francesco Grieco |
Direction : | François Dulieu, Ilse De Looze |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de la terre et de l'univers - Cergy |
Date : | Soutenance le 15/10/2024 |
Etablissement(s) : | CY Cergy Paris Université en cotutelle avec Universiteit Gent (1817-....) |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d’étude du rayonnement et de la matière en astrophysique et atmosphères (Paris ; 2002-2024) |
Jury : | Président / Présidente : Toon Verstraelen |
Examinateurs / Examinatrices : François Dulieu, Ilse De Looze, Serena Viti, Maria Asuncion Fuente, Maarten Baes, Jennifer Noble | |
Rapporteurs / Rapporteuses : Serena Viti, Maria Asuncion Fuente |
Mots clés
Résumé
Cette thèse présente une étude complète de l'interaction entre les grains de poussière et diverses espèces en phase gazeuse dans le milieu interstellaire. Les principaux résultats impliquent l'utilisation de surfaces comme la glace et le coronène, une surface qui ressemble aux hydrocarbures aromatiques polycycliques (PAH), avec des éléments H et O en phase gazeuse. Nous étudions comment les grains de poussière peuvent catalyser la formation de nouvelles molécules par des processus comme l'adsorption, la diffusion, les réactions de surface et la désorption dans des conditions typiques du milieu interstellaire.La thèse comprend trois chapitres expérimentaux (4, 5 et 6), réalisés au LERMACYU en utilisant la configuration FORMOLISM, qui sont complétés par deux études théoriques (chapitres 8 et 9), menées avec les codes Cloudy et Nautilus à l'UGent. Les expériences se concentrent sur le rôle que jouent les différentes surfaces de grains de poussière et les couches de glace sur les énergies de liaison (BE) des molécules (chapitre 4), sur la formation expérimentale de H2 sur le coronène jusqu'à 250 K (chapitre 5) et sur la formation d'eau solide sur la poussière à des températures allant jusqu'à 85 K (chapitre 6). Plusieurs implications astrophysiques sont également discutées.Les résultats présentés au chapitre 5 montrent comment H2 peut se former dans des nuages moléculaires avec des températures de poussière >20 K et cela est extrêmement pertinent pour expliquer l'efficacité de H2 et de la formation d'étoiles dans les galaxies à fort décalage vers le rouge. Le chapitre 6 donne de nouvelles perspectives sur la formation de manteaux de glace qui pourraient se former à une température plus élevée que celle démontrée précédemment,étant un moyen significatif d'expliquer l'appauvrissement en O élémentaire en phase gazeuse observé dans de telles conditions. De plus, la disparition des PAH lors de la transition des nuages diffus aux nuages denses pourrait s'expliquer par le fait que les grains de poussière commencent à être recouverts par des couches de glace. Dans le chapitre 8, nous étudions l'effet de la formation expérimentale de H2 à haute température sur les PAH sur la localisation du front de dissociation (DF) dans une image PDR classique, en le modélisant avec Cloudy. À partir d'une implémentation de base des résultats expérimentaux du chapitre 5 dans le code, il a été difficile de quantifier cet effet. Cela souligne combien il reste encore beaucoup de travail à faire sur les modèles pour mieux correspondre aux observations. Dans le chapitre 9, certaines questions concernant l'appauvrissement en O dans les nuages translucides et la croissance des grains introduites au chapitre 6 sont abordées avec Nautilus. En utilisant une stratégie innovante, nous avons pu reproduire les appauvrissements en C et O dans des conditions de nuages translucides en les verrouillant dans deux espèces de surface distinctes lors de l'adsorption, reproduisant le rapport de structure moléculaire des carbonates organiques. Cette thèse montre l'incroyable nature catalytique des PAH et leur capacité à permettre des processus de chimisorption pour la formation de molécules à des températures de poussière élevées. Il s'agit d'un résultat important qui peut être lié aux nouvelles découvertes rapportant la possibilité d'avoir une croissance des grains à des nH plus faibles.