Thèse soutenue

Grands diviseurs premiers de suites récurrentes linéaires

FR  |  
EN
Auteur / Autrice : Haojie Hong
Direction : Yuri Bilu
Type : Thèse de doctorat
Discipline(s) : Mathématiques Pures
Date : Soutenance le 08/07/2024
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Jean Gillibert
Examinateurs / Examinatrices : Florent Jouve
Rapporteur / Rapporteuse : Sara Checcoli, Aurélien Galateau

Résumé

FR  |  
EN

Cette thèse porte sur les minorations des plus grands diviseurs premiers de suites récurrentes linéaires. Tout d’abord, nous obtenons une version uniforme et explicite du résultat séminal de Stewart sur les diviseurs premiers des suites de Lucas. Nous montrons que les constantes du théorème de Stewart ne dépendent que du corps quadratique correspondant à la suite de Lucas, mais pas d’autres paramètres. Nous étudions ensuite les diviseurs premiers des ordres de courbes elliptiques sur des corps finis. En fixant une courbe elliptique sur un corps fini Fq avec q puissance d’un nombre premier, la suite #E(Fqn) s’avère être une suite récurrente linéaire d’ordre 4. Soit P(x) le plus grand nombre premier divisant x. Une minoration de P(#E(Fqn)) est donnée en utilisant l’argument de Stewart et quelques discussions plus délicates. Ensuite, motivés par nos deux projets précédents, nous pouvons montrer que lorsque γ est un nombre algébrique de degré 2 et non une racine d’unité, il existe un idéal premier p de Q(γ) vérifiant νp(γn − 1) ≥ 1, tel que le nombre premier rationnel p sous-jacent à p croît plus rapidement que n. Enfin, nous considérons une application de la méthode de Stewart aux nombres de Fibonacci Fn. Nous obtenons des bornes relativement plus nettes pour P(Fn). Tous les sujets ci-dessus s’appuient essentiellement sur l’estimation de Yu pour des formes linéaires de logarithmique p-adiques.