Thèse soutenue

Propriétés géométriques et ergodiques des endomorphismes semi-extrémaux de CP(2)

FR  |  
EN
Auteur / Autrice : Virgile Tapiero
Direction : Christophe Dupont
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 23/06/2023
Etablissement(s) : Université de Rennes (2023-....)
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes ; 2022-....)
Partenaire(s) de recherche : Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....)
Jury : Président / Présidente : Romain Dujardin
Examinateurs / Examinatrices : Matthieu Astorg, Séverine Biard, Jérôme Buzzi, Dominique Cerveau
Rapporteurs / Rapporteuses : Romain Dujardin, Tien-Cuong Dinh

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La thèse étudie les propriétés géométriques et dynamiques des endomorphismes semi-extrémaux du plan projectif complexe : ce sont les applications holomorphes possédant un seul exposant de Lyapunov minimal. Le premier chapitre traite des aspects géométriques de ces applications. Les exemples connus préservent un pinceau de droites, nous observons tout d’abord que cela impose une formule pluri-potentialiste reliant le courant de Green et la mesure d’équilibre près des points périodiques répulsifs du petit ensemble de Julia. Nous montrons ensuite que, réciproquement, lorsque cette formule est vérifiée, et sous des hypothèses portant sur le courant de Green et la mesure d'équilibre, l'application laisse un feuilletage holomorphe invariant au voisinage du petit ensemble de Julia. Il s'agit là d'un phénomène de rigidité, dont la preuve passe par l'étude d'applications de Poincaré associées aux point périodiques répulsifs. Lorsque le feuilletage se prolonge au plan projectif (par exemple lorsque le complémentaire du petit ensemble de Julia est de Stein), l'application laisse un pinceau invariant. Le deuxième chapitre est consacré aux propriétés dynamiques des endomorphismes semi-extrémaux. Ceux préservant un pinceau de droites possèdent une mesure d’équilibre absolument continue par rapport au courant de Green. R. Dujardin a montré que cette condition garantit la minimalité d'un exposant de Lyapunov. Nous montrons que la propriété réciproque est vraie, sous une certaine condition d’uniformité sur les variétés instables, ce qui répond partiellement à une question posée par R. Dujardin. La preuve associe une méthode classique de théorie ergodique (basée sur des partitions mesurables et sur l'entropie) à un théorème de linéarisation des branches inverses le long d’orbites génériques dans le passé.