Thèse soutenue

Risque systémique, réseaux financiers complexes et systèmes interactifs de type graphon champ moyen

FR  |  
EN
Auteur / Autrice : Zhongyuan Cao
Direction : Agnès Sulem
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 22/09/2023
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : Ecole doctorale SDOSE (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de recherche en mathématiques de la décision (Paris) - Centre de Recherche en Mathématiques de la Décision
établissement opérateur d'inscription : Université Paris Dauphine-PSL (1968-....)
Jury : Président / Présidente : Laurent Massoulié
Examinateurs / Examinatrices : Agnès Sulem, Laurent Massoulié, Rama Cont, Erhan Bayraktar, Hamed Amini, Aurélien Alfonsi, Huyên Pham, Luitgard Veraart
Rapporteurs / Rapporteuses : Rama Cont, Erhan Bayraktar

Résumé

FR  |  
EN

Cette thèse est divisée en deux parties. La première partie étudie la stabilité et le risque systémique de réseaux financiers complexes, soumis à des processus de contagion de défauts, et de ventes forcées. Nous prouvons des théorèmes limites de type loi des grands nombres et limite centrale sur la dynamique de contagion. Nous montrons comment quantifier le risque systémique d'un réseau financier en présence d'une perturbation externe et sous information partielle. Nous étudions ensuite les processus de risque multidimensionnels de Cramér-Lundberg où les agents, situés sur un grand réseau, subissent des pertes de la part de leurs voisins. Nous présentons enfin un cadre général abordable pour comprendre l'impact conjoint de liquidations et de cascades de défauts sur le risque systémique dans les réseaux financiers complexes. La deuxième partie de la thèse est consacrée à l'étude et le contrôle de systèmes interactifs de type graphon champ moyen. Le réseau financier est ici considéré comme un grand système interactif, ce qui établit un lien avec la théorie des jeux à champ moyen. La structure en champ moyen repose sur la structure de graphe sous-jacente du réseau, appelée champ moyen graphon. Nous commençons par une étude systématique des équations différentielles stochastiques rétrogrades (EDSR) avec sauts de type graphon champ moyen et ses mesures de risque dynamiques associées. Nous étudions ensuite des jeux stochastiques continus avec interactions non homogènes de type champ moyen sur de vastes réseaux et explorons leurs limites graphon champ moyen. Nous proposons des équilibres de Nash approximés pour les jeux finis sur les réseaux, utilisant les équilibres en champ moyen graphon associés comme référence.