Thèse soutenue

Centres colorés contrôlés en position dans le nitrure de bore hexagonal pour l'émission de photons uniques cohérents

FR  |  
EN
Auteur / Autrice : Clarisse Fournier
Direction : Jean-Pierre HermierAymeric Delteil
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 19/12/2023
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale INTERFACES : approches interdisciplinaires, fondements, applications et innovation
Partenaire(s) de recherche : Laboratoire : Groupe d’Etude de la Matière Condensée (GEMAC)
référent : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....)
graduate school : Université Paris-Saclay. Graduate School Sciences de l'ingénierie et des systèmes (2020-....)
Jury : Président / Présidente : Alberto Amo Garcia
Examinateurs / Examinatrices : Carole Diederichs, Andréa Balocchi, Elsa Cassette
Rapporteurs / Rapporteuses : Carole Diederichs, Andréa Balocchi

Résumé

FR  |  
EN

Le traitement optique de l'information quantique nécessite des émetteurs de photons uniques indiscernables. Dans ce cadre, des émetteurs quantiques récemment découverts dans les matériaux 2D offrent de nouvelles perspectives en termes de dispositifs photoniques intégrés. Ainsi, dans le nitrure de bore hexagonal (hBN), une nouvelle famille de centres colorés a l'avantage de posséder une faible dispersion en longueur d'onde. Ces centres émettant dans le bleu (λ ≈ 435 nm) peuvent également être positionnés de manière déterministe. Ces deux qualités sont rares parmi les émetteurs quantiques dans l'état solide et s'ajoutent en outre à des propriétés photophysiques avantageuses. Cette famille d'émetteurs constitue l'objet d'étude principal de cette thèse.Dans un premier temps, nous détaillons les principales figures de mérite d'un émetteur de photons uniques : brillance, pureté, cohérence temporelle et indiscernabilité. Nous évoquerons également les principaux systèmes physiques émettant des photons uniques, afin de contextualiser la caractérisation à suivre des centres colorés bleus dans hBN.Nous décrivons, dans une deuxième partie, les méthodes expérimentales génériques employées au cours de la thèse en commençant par l'exfoliation mécanique permettant d'obtenir des cristaux de hBN et l'irradiation électronique pour la création des centres colorés. Ceux-ci sont ensuite caractérisés optiquement à l'échelle individuelle au moyen de techniques combinant microscopie confocale, cryogénie, comptage de photons et spectroscopie. Nous détaillons également le traitement des données utilisé pour calculer la fonction d'autocorrélation d'intensité. Le troisième chapitre est consacré aux mesures de différentes propriétés photophysiques des centres bleus à l'échelle de l'émetteur individuel, telles que le temps de vie, la pureté, la polarisation et la photostabilité. Nous nous intéressons également au processus de création des centres colorés bleus, en effectuant des mesures de cathodoluminescence in situ, complétées par des mesures optiques. La nature microscopique de cette famille de centres colorés est également évoquée.Nous traitons ensuite de l'excitation laser résonante d'un centre bleu. L'étude des corrélations de photons permet d'observer des oscillations de Rabi, et d'en extraire le temps de cohérence de l'émetteur. En outre, ces corrélations donnent accès à la dynamique de la diffusion spectrale prenant place à une échelle de temps de l'ordre de la dizaine de microsecondes. Enfin, nous étudions l'indiscernabilité des photons émis par un centre bleu en mesurant les corrélations de photons dans un interféromètre de Hong, Ou et Mandel. Nous mettons en évidence le phénomène d'interférence à deux photons témoignant de l'indiscernabilité partielle des photons émis par le centre coloré. Ce résultat prometteur pourra être améliorée grâce à l'intégration des émetteurs dans des structures photoniques visant à augmenter la collection et diminuer l'impact du déphasage.Les résultats détaillés dans cette thèse démontrent le potentiel de ces centres colorés bleus dans hBN pour des applications dans le domaine de l'information quantique. De futur développements permettront une meilleure compréhension et un meilleur contrôle de leur dynamique d'émission ainsi que leur intégration dans des dispositifs optoélectroniques. Ces travaux ouvrent de nouvelles perspectives en termes de photonique quantique avec des matériaux 2D.