Plongement de graphes multicouches pour l'intégration de données omiques en bioinformatique
Auteur / Autrice : | Surabhi Jagtap |
Direction : | Jean-Christophe Pesquet, Fragkiskos Malliaros, Laurent Duval |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique mathématique |
Date : | Soutenance le 02/02/2023 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de vision numérique (Gif-sur-Yvette, Essonne) |
référent : CentraleSupélec (2015-....) | |
graduate school : Université Paris-Saclay. Graduate School Sciences de l'ingénierie et des systèmes (2020-....) | |
Jury : | Président / Présidente : Macha Nikolski |
Examinateurs / Examinatrices : Mehmet Koyutürk, Laurence Calzone | |
Rapporteurs / Rapporteuses : Thierry Artières, Mehmet Koyutürk |
Mots clés
Résumé
Les systèmes biologiques sont composés de biomolécules en interaction à différents niveaux moléculaires. D’un côté, les avancées technologiques ont facilité l’obtention des données omiques à ces divers niveaux. De l’autre, de nombreuses questions se posent, pour donner du sens et élucider les interactions importantes dans le flux d’informations complexes porté par cette énorme variété et quantité des données multi-omiques. Les réponses les plus satisfaisantes seront celles qui permettront de dévoiler les mécanismes sous-jacents à la condition biologique d’intérêt. On s’attend souvent à ce que l’intégration de différents types de données omiques permette de mettre en lumière les changements causaux potentiels qui conduisent à un phénotype spécifique ou à des traitements ciblés. Avec les avancées récentes de la science des réseaux, nous avons choisi de traiter ce problème d’intégration en représentant les données omiques à travers les graphes. Dans cette thèse, nous avons développé trois modèles à savoir BraneExp, BraneNet et BraneMF pour l’apprentissage d’intégrations de noeuds à partir de réseaux biologiques multicouches générés à partir de données omiques. Notre objectif est de résoudre divers problèmes complexes liés à l’intégration de données multiomiques, en développant des méthodes expressives et évolutives capables de tirer parti de la riche sémantique structurelle latente des réseaux du monde réel.