Thèse soutenue

Modéliser l'évolution du climat global et de la calotte eurasienne pendant la dernière déglaciation

FR  |  
EN
Auteur / Autrice : Victor Van Aalderen
Direction : Sylvie Charbit
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 18/12/2023
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences de l'environnement d'Île-de-France (Paris ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences du climat et de l'environnement (Gif-sur-Yvette, Essonne ; 1998-....)
Référent : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....)
graduate school : Université Paris-Saclay. Graduate School Géosciences, climat, environnement et planètes (2020-....)
Jury : Président / Présidente : Amaëlle Landais
Examinateurs / Examinatrices : Jorge Alvarez-Solas, Florence Colleoni, Didier Swingedouw, Nicolas Jourdain
Rapporteur / Rapporteuse : Jorge Alvarez-Solas, Florence Colleoni

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La calotte marine de l'Antarctique de l'Ouest présente la particularité d'être en grande partie en contact avec l'océan. Les dernières observations révèlent une accélération de sa perte de masse sur les dernières décennies, essentiellement provoquée par l'augmentation de la fonte sous les plateformes de glace flottante. En revanche, son évolution future reste très incertaine, du fait de notre mauvaise compréhension des processus physiques mis en jeu entre la calotte et l'océan.La dernière déglaciation (-21 000 - -11 000 ans), constitue l'un des changements climatiques majeurs les plus récents de notre histoire. Cette période est marquée par une augmentation des températures atmosphériques globales et la disparition des calottes nord-américaine et eurasienne. L'étude de la calotte marine de Barents-Kara (BKIS), qui couvrait les mers de Barents et de Kara au Dernier Maximum Glaciaire (DMG, -21 000 ans) et faisait partie intégrante de la calotte eurasienne, revêt un intérêt particulier en raison de ses caractéristiques communes avec l'Antarctique de l'Ouest actuel. Identifier les mécanismes responsables de son recul permet de fournir des informations pour mieux comprendre le comportement de l'Antarctique de l'Ouest dans des contextes climatiques actuel et futur.L'impact du climat sur l'évolution d'une calotte marine dépend de deux processus principaux : le bilan de masse de surface, influencé par les températures atmosphériques et précipitations, ainsi que la fonte sous la glace flottante, liée aux températures océaniques et la salinité. Pour identifier les mécanismes ayant initié la fonte de BKIS, j'ai utilisé le modèle de glace GRISLI2.0 afin d'analyser la réponse de cette calotte à des perturbations du climat au DMG. Cette étude a mis en évidence le rôle déterminant des températures atmosphériques dans le déclenchement de la fonte de la calotte via la fonte de surface, tandis que les températures océaniques n'ont eu qu'un impact limité malgré une grande partie de la calotte BKIS en contact avec l'océan. J'ai aussi identifié que la fonte totale BKIS pouvait être attribuée à une instabilité mécanique à la ligne d'échouage, provoquée par une diminution de l'épaisseur de glace dû à une augmentation de la fonte de surface. Afin de mieux comprendre l'impact des calottes sur le climat global, j'ai également réalisé la première simulation transitoire de la dernière déglaciation avec le modèle IPSL-CM5A2 en modifiant à certaines périodes clés la géométrie des calottes de glace donnée par la reconstruction GLAC-1D. Les simulations montrent une tendance du réchauffement en accord avec les reconstructions, notamment lors du MWP1A caractérisé par une augmentation abrupte des températures atmosphériques. A partir d'expériences de sensibilité, j'ai mis en évidence que les changements de géométrie des calottes glaciaires ont participé à l'augmentation des températures atmosphérique via les rétroactions température-altitude et l'effet d'albédo. Par ailleurs, j'ai aussi montré que la dynamique océanique a été notablement perturbée par les flux d'eau douce issus de la fonte des calottes. Ce phénomène a conduit à une atténuation de l'intensité de la circulation méridienne de retournement de l'Atlantique et à une réduction de sa profondeur de plongée, entraînant un ralentissement du réchauffement, principalement dans l'Atlantique Nord. De plus, les expériences IPSL-CM5A2 simulent toutes un arrêt de la circulation des eaux de fond antarctiques au début du MWP1A, entraînant un refroidissement significatif d'une centaine d'années dans la mer d'Amundsen, suivi d'une réactivation de cette même circulation. Ces travaux contribuent ainsi à une meilleure compréhension des mécanismes complexes régissant la dynamique des calottes glaciaires et de leur interaction avec le climat, tout en offrant des éléments de réponse pour anticiper les conséquences des changements climatiques actuels et futurs, notamment en ce qui concerne l'Antarctique de l'Ouest.