Combinatoire des permusylvèdres et géométrie des s-permutaèdres
Auteur / Autrice : | Daniel Tamayo Jiménez |
Direction : | Viviane Pons, Vincent Pilaud |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique mathématique |
Date : | Soutenance le 17/10/2023 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire interdisciplinaire des sciences du numérique (Orsay, Essonne ; 2021-....) |
Référent : Faculté des sciences d'Orsay | |
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-….) | |
Jury : | Président / Présidente : Jean-Christophe Novelli |
Examinateurs / Examinatrices : Samuele Giraudo, Torsten Mütze, Nathalie Aubrun, Mathilde Bouvel, Francisco Santos | |
Rapporteur / Rapporteuse : Samuele Giraudo, Torsten Mütze |
Résumé
En combinatoire algébrique, les treillis sont des ensembles partiellement ordonnés qui possèdent à la fois des opérations inf et sup. L'ordre faible sur les permutations est un exemple classique de treillis qui possède une riche structure combinatoire. Cela en a fait un point de départ à partir duquel d'autres objets combinatoires ont été définis. Pour cette thèse, nous nous concentrons sur l'étude de deux familles différentes de treillis en relation avec l'ordre faible: les treillis des permusylvestres et le s-ordre faible. La première partie de la thèse concerne la théorie des quotients de treillis de l'ordre faible en s'appuyant sur le travail de N. Reading. On se concentre spécifiquement sur la famille des quotients des permusylvestres de l'ordre faible. En les considérant comme des permusylvestres, comme dans le travail de V. Pilaud et V. Pons, nous étendons la technologie des vecteurs de crochet des arbres binaires en définissant les vecteurs d'inversion et les vecteurs cubiques. Le vecteur d'inversion capture l'opération de meet de ces treillis tandis que le vecteur cubique permet de les réaliser géométriquement via une configuration cubique. En changeant de point de vue et en étudiant ces quotients à travers les éléments minimaux de leurs classes de congruence, nous utilisons la description de Coxeter de type A des permutations pour caractériser les permusylvestres avec l'aide d'automates. Ces automates capturent l'évitement de motifs ijk et/ou kij impliqués par ces quotients et nous permettent de définir des algorithmes qui généralisent le tri par pile. Dans le cas où le quotient correspond à un treillis cambrien, nous relions nos automates au tri de Coxeter. Nous donnons quelques indications sur le même phénomène pour les groupes de Coxeter de types B et D. La deuxième partie de cette thèse découle du travail de V. Pons et C. Ceballos qui ont défini le s-ordre faible sur les arbres s-décroissants où s est une séquence d'entiers positifs. Dans le cas de s=(1,ldots,1), cette définition récupère l'ordre faible. Dans leur premier article, les auteurs ont conjecturé que le s-permutaèdre pouvait être réalisé dans l'espace comme une subdivision polyédrique d'un zonotope. Nous donnons une réponse positive à leur conjecture lorsque s est une séquence d'entiers positifs en définissant un graphe dont les polytopes de flot nous permettent de récupérer le s-ordre faible. Nous utilisons des techniques de flots sur les graphes, de géométrie discrète et de géométrie tropicale pour obtenir des réalisations du s-permutaèdre avec différentes propriétés. Avec l'idée de décrire les quotients de treillis de le s-ordre faible, nous étudions leurs éléments sup-irréductibles. Nous introduisons également une opération sur les graphes pour définir un analogue des quotients de treillis des permusylvestres sur ces treillis.