Thèse soutenue

Modélisation des neurones, équation de Bloch-Torrey et leur application à l'estimation de la microstructure du cerveau par IRM de diffusion

FR  |  
EN
Auteur / Autrice : Chengran Fang
Direction : Jing-Rebecca LiDemian Wassermann
Type : Thèse de doctorat
Discipline(s) : Informatique mathématique
Date : Soutenance le 02/02/2023
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Saclay, Ile-de-France)
Référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-….)
Jury : Président / Présidente : Clair Poignard
Examinateurs / Examinatrices : Denis Grebenkov, Marco Palombo, Ileana O. Jelescu
Rapporteur / Rapporteuse : Clair Poignard, Denis Grebenkov

Résumé

FR  |  
EN

L'estimation non invasive de la microstructure du cerveau, qui se compose de nombreux neurites, de somas et de cellules gliales, est essentielle pour l'imagerie cérébrale. L'IRM de diffusion (IRMd) est une technique prometteuse pour sonder les propriétés microstructurelles du cerveau en dessous de la résolution spatiale des scanners IRM. En raison de la complexité structurelle du tissu cérébral et du mécanisme complexe de l'IRM de diffusion, l'estimation de la microstructure in vivo est un défi. Les méthodes existantes utilisent généralement des géométries simplifiées, notamment des sphères et des bâtons, pour modéliser les structures neuronales et obtenir des expressions analytiques des signaux intracellulaires. La validité des hypothèses faites par ces méthodes reste indéterminée. Cette thèse vise à faciliter l'estimation de la microstructure du cerveau par simulation en remplaçant les géométries simplifiées par des modèles réalistes de la géométrie des neurones et les expressions analytiques des signaux intracellulaires par des simulations d'IRM de diffusion. Combinées à des modèles précis de la géométrie des neurones, les simulations numériques d'IRMd peuvent donner des signaux intracellulaires précis et incorporer les effets dus, par exemple, à l'ondulation des neurites ou à l'échange d'eau entre le soma et les neurites.Malgré ces avantages, les simulations d'IRMd n'ont pas été largement adoptées en raison de l'inaccessibilité des fantômes numériques, de la faible efficacité de calcul des simulateurs d'IRMd et de la difficulté d'approximer les mappings implicites entre les signaux d'IRMd et les propriétés de la microstructure. Cette thèse contribue à la résolution des problèmes susmentionnés de la manière suivante : (1) en développant un générateur de maillage de neurones open-source et en rendant accessibles au public plus d'un millier de maillages cellulaires réalistes ; (2) en augmentant d'un facteur dix l'efficacité de calcul de la méthode du formalisme matriciel numérique ; (3) en mettant en œuvre une nouvelle méthode de simulation qui fournit une représentation de type Fourier des signaux IRMd ; (4) en proposant un cadre d'apprentissage supervisé basé sur la simulation pour estimer la microstructure du cerveau par IRM de diffusion.