Nouvelles avancées dans le domaine de la fonctionnalisation de surface médiée par les plasmons
Auteur / Autrice : | Théo Geronimi-Jourdain |
Direction : | Nordin Felidj |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie physique |
Date : | Soutenance le 06/02/2023 |
Etablissement(s) : | Université Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Interfaces, Traitements, Organisation et Dynamique des Systèmes (Paris ; 2001-....) |
Jury : | Président / Présidente : Catherine Schwob |
Examinateurs / Examinatrices : Catherine Schwob, Clémence Queffelec, Davy Gérard, Nébéwia Griffete, Olivier Pluchery | |
Rapporteurs / Rapporteuses : Clémence Queffelec, Davy Gérard |
Résumé
L'assemblage de nanoparticules (NPs) couplées a suscité un grand intérêt ces dernières années, en vue d'application dans la détection de composés chimiques (molécule, explosifs, drogues,') appartenant au domaine de la spectroscopie Raman exaltée de surface (SERS) par exemple. Récemment, le couplage de structures périodiques de nanoparticules métalliques NPs a permis de mettre en avant des résonances dites résonances collectives de surface (SLR) résultant du couplage entre les modes plasmon de surface localisé et les modes de diffraction. Ces résonances se caractérisent par une largeur spectrale très fine impliquant une forte exaltation du champ électrique au voisinage des nanoparticules. Dans cette thèse, nous proposons une étude expérimentale vérifiée par le biais de modélisations par la méthode des Différences Finies dans le Domaine Temporel (FDTD), des résonances plasmoniques individuelles et collectives de surfaces supportées par des réseaux périodiques de NPs métalliques élaborés par la technique lithographie électronique. La première partie de cette thèse, mets en évidence les principales caractéristiques optiques, de la NP unique à l'assemblage de NPs en réseau périodique. Ce chapitre est illustré de quelques exemples tirés de la littérature sur l'excitation de ces plasmons de surface, pour engendrer une fonctionnalisation localisée de surface. Dans un deuxième temps, une étude approfondie sur l'amélioration des conditions de morphologie des substrats plasmoniques, en vue d'améliorer le greffage moléculaire au niveau des NPs, est présentée. Puis, nous présentons les résultats obtenus pour une méthode de greffage chimique, mise en place au laboratoire, et qui permet la visualisation directe des modes de réseau, par greffage de films moléculaires organiques dérivés de sels de diazonium, en excitant des modes SLRs. Enfin, la dernière partie porte sur l'étude des réseaux binaires de nanoparticules qui ont révélé l'émergence de deux modes plasmoniques hybrides, provenant de l'asymétrie du motif élémentaire. Nous avons ensuite mené, à l'aide de notre stratégie de greffage, une étude sur la fixation de molécules uniquement dans les zones de maximum d'exaltions des champs électriques en excitant tantôt dans le mode symétrique, tantôt, dans le mode anti-symétrique. Pendant ce doctorat, ces travaux de recherche ont permis une nette amélioration de la compréhension et du contrôle de la localisation du dépôt à l'échelle de la nanoparticule. C'est sur cette base solide qu'il est envisageable d'associer des matériaux déjà connus pour leurs propriétés optiques remarquables (NPs métalliques, boîtes quantiques 'QD), avec un polymère thermosensible (le pNIPAM), permettant un contrôle actif et réversible de l'exaltation (ou l'inhibition) de l'émission de lumière par les QDs, à l'échelle de la NP métallique. Un tel contrôle permettrait une avancée majeure des performances optiques des QDs incorporés dans des composants optiques.