Thèse soutenue

LCQ à grande longueur d'onde pour la détection de BTEX et de Propane par QEPAS

FR  |  
EN
Auteur / Autrice : Kumar Kinjalk
Direction : Alexeï BaranovAngelo Sampaolo
Type : Thèse de doctorat
Discipline(s) : Électronique
Date : Soutenance le 13/12/2023
Etablissement(s) : Université de Montpellier (2022-....) en cotutelle avec Università degli Studi di Bari Aldo Moro (Bari, Italie)
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut d'électronique et des systèmes (Montpellier)
Jury : Président / Présidente : Roberto Li Voti
Examinateurs / Examinatrices : Marco Genovese, Anna Maria Coclite
Rapporteurs / Rapporteuses : Guilhem Almuneau, Marco Andrea marangoni

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La détection sensible et sélective des BTEX et du propane présente un grand intérêt pour les applications environnementales, biomédicales et pétrochimiques. Cependant, la détection de ces composés est compliquée à cause des interférences potentielles, soit entre eux, soit avec d'autres composés. Ce problème peut être résolu par la spectroscopie laser à de grandes longueurs d'onde (13-15 µm), où ils présentent des caractéristiques d'absorption très discriminantes. Pourtant, cette gamme spectrale est pratiquement inexplorée en raison du manque de sources appropriées. Cette thèse vise à combler cette lacune en développant des LCQ émettant à des grandes longueurs d'onde élevées et en exploitant le QEPAS pour une détection ultra-sensible et sélective.Un nouveau design est proposé pour améliorer les performances des LCQ à base d'InAs de grande longueurs d'onde. Cette conception nous a permis de démontrer une densité de courant de seuil record de 0,6 kA/cm2 à 300 K. En outre, une nouvelle technique d'isolation utilisant le SOG est également proposée pour améliorer les problèmes de stabilité du dispositif provoqués par l'altération des propriétés de l'isolation de la résine photosensible (généralement utilisée pour les QCL à base d'InAs) à des températures élevées. Par la suite, des QCL DFB monomodes avec un SMSR > 20 dB et une puissance de sortie optique de l'ordre du mW ont été développé, ciblant les lignes d'absorption de ces gaz. En utilisant ces lasers, un système de détection basé sur le QEPAS a été développé, calibré et caractérisé pour la détection du toluène, du benzène et du propane. Des limites de détection exceptionnellement basses de 113 ppb, 3 ppb et 3 ppm sont atteintes dans une matrice d'azote pur sur un temps d'intégration de 10 secondes. Le système conserve sa sélectivité et sa robustesse, même dans des mélanges de gaz complexes. Enfin, une QCL de 13,71 µm est couplée avec succès à un HCW, où les conditions optimales de couplage, la qualité du faisceau et la perte sont explorées. L'étude confirme la transmission efficace d'une telle longueur d'onde à travers le HCW avec une perte minimale et une qualité de faisceau spatial améliorée.