Co-ordonnancement processeur et mémoire des applications temps-réel sur les plateformes multicœurs
Auteur / Autrice : | Ikram Senoussaoui |
Direction : | Giuseppe Lipari, Mohammed Kamel Benhaoua |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et applications |
Date : | Soutenance le 14/12/2023 |
Etablissement(s) : | Université de Lille (2022-....) en cotutelle avec Université Oran 1 (Algérie) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences du numérique et de leurs interactions (Lille ; 2021-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de Recherche en Informatique, Signal et Automatique de Lille |
Jury : | Président / Présidente : Bilel Derbel |
Examinateurs / Examinatrices : Sidi Mohammed Benslimane, Emmanuel Grolleau, Houssam-Eddine Zahaf | |
Rapporteur / Rapporteuse : Maryline Chetto, Hadda Cherroun |
Mots clés
Résumé
La demande en puissance de calcul dans les systèmes embarqués temps-réel a considérablement augmenté ces dernières années. Les plateformes multicœurs qui sont généralement équipés d'un sous-système de mémoire partagé par tous les cœurs ont répondu dans une certaine mesure à ce besoin croissant en capacité de calcul. Cependant, dans les systèmes temps-réel, l'utilisation simultanée du sous-système de mémoire peut induire à des interférences mémoire significatives.Ces dernières peuvent rendre les pires temps d'exécution des tâches (WCET) très pessimistes et conduire à une sous-utilisation du système. Cette thèse se concentre sur la réduction des interférences résultantes des conflits liés aux ressources partagées (par exemple les mémoires cache, les bus de communication et la mémoire principale) dans les systèmes multicœursgrâce au co-ordonnancement des calculs et des transferts de donnée des applications temps-réel. À cette fin, nous utilisons des modèles de tâches existants tels que le modèle DFPP (Deferred Fixed Preemption Point), le modèle PREM (PRedictable-Exécution-Model) et le modèle AER (Acquisition-Execution-Restitution model). Nous proposons un nouveau modèle de tâche réaliste et plusieurs algorithmes de co-ordonnancement et de partitionnement des tâches temps-réel. Nous montrons que de tels ordonnanceurs peuvent améliorer jusqu'à 50% le taux d'ordonnançabilité par rapport aux ordonnanceurs équivalents générés avec les méthodes de l'état de l'art. De plus, nous démontrons expérimentalement l'applicabilité de nos méthodologies sur la famille de processeurs multicœurs Infineon AURIX TC-397 en utilisant différents benchmarks.