Thèse soutenue

Une Classification Algorithmique des Homéomorphismes Pseudo-Anosov Généralisés via les Partitions Géométriques de Markov

FR  |  
EN
Auteur / Autrice : Inti Cruz Diaz
Direction : Christian Bonatti
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 19/12/2023
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....)
Partenaire(s) de recherche : Etablissement de préparation : Université de Bourgogne (1970-2024)
Laboratoire : Institut de Mathématiques de Bourgogne (IMB) (Dijon)
Jury : Président / Présidente : François Béguin
Examinateurs / Examinatrices : José Ferrán Valdez Lorenzo, Ana Rechtman, Olga V. Pochinka, Pierre Dehornoy, Erwan Lanneau
Rapporteur / Rapporteuse : François Béguin, André Salles de Carvalho

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse vise à fournir une classification des homéomorphismes pseudo-Anosov généralisés jusqu'à la conjugaison topologique en utilisant une approche algorithmique. Cela implique l'obtention d'invariants finis et calculables pour chaque classe de conjugaison.Une partition de Markov d'un homéomorphisme pseudo-Anosov généralisé est une décomposition de la surface en un nombre fini de rectangles avec des intérieurs disjoints, de telle manière que leurs images interagissent avec n'importe quel autre rectangle de la partition de Markov le long d'un nombre fini de sous-rectangles horizontaux. Chaque homéomorphisme pseudo-Anosov généralisé a une partition de Markov, et en utilisant l'orientation de la surface, nous pouvons doter toute partition de Markov d'une géométrisation. Ce processus implique d'étiqueter les rectangles et de choisir une orientation sur les feuilles stables et instables de chacun de ces rectangles.Le type géométrique d'une partition de Markov géométrique a été défini par Bonatti et Langevin dans leur livre ''Difféomorphismes de Smale des surfaces'' pour classer les pièces de base de type selle des difféomorphismes structurellement stables sur les surfaces. Un type géométrique est un objet combinatoire abstrait qui généralise la matrice d'incidence d'une partition de Markov. Il prend en compte non seulement le nombre de fois où l'image d'un rectangle interagit avec un autre rectangle de la famille, mais aussi l'ordre et le changement d'orientation induit par les homéomorphismes.Cette thèse utilise le type géométrique d'une partition de Markov géométrique pour classer les classes de conjugaison des homéomorphismes pseudo-Anosov. Nos principaux résultats peuvent être résumés comme suit :Le type géométrique est un invariant complet de la conjugaison : Une paire d'homéomorphismes pseudo-Anosov généralisés est topologiquement conjuguée l'un à l'autre à travers un homéomorphisme préservant l'orientation si et seulement si ils ont des partitions de Markov géométriques avec le même type géométrique.La réalisation : Les types géométriques sont définis de manière large, et chaque type géométrique abstrait ne correspond pas nécessairement à un homéomorphisme pseudo-Anosov. Un type géométrique T est considéré comme faisant partie de la classe pseudo-Anosov s'il existe un homéomorphisme pseudo-Anosov généralisé avec une partition de Markov géométrique de type T. Notre deuxième résultat fournit un critère calculable et combinatoire pour déterminer si un type géométrique abstrait appartient à la classe pseudo-Anosov.Représentations équivalentes : Chaque homéomorphisme pseudo-Anosov généralisé a un nombre infini de partitions de Markov géométriques avec différents types géométriques. Notre troisième résultat est un algorithme permettant de déterminer si deux types géométriques dans la classe pseudo-Anosov sont réalisés par des homéomorphismes pseudo-Anosov généralisés qui sont topologiquement conjugués ou non.