Thèse soutenue

Prévention des attaques de confiance en temps réel dans l'IoT social

FR  |  
EN
Auteur / Autrice : Mariam Masmoudi
Direction : Florence SèdesIkram Amous-Ben Amor
Type : Thèse de doctorat
Discipline(s) : Informatique et Télécommunications
Date : Soutenance le 18/12/2023
Etablissement(s) : Toulouse 3 en cotutelle avec Université de Sfax (Tunisie)
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Informatique de Toulouse (1995-....)
Jury : Président / Présidente : Frédérique Laforest
Examinateurs / Examinatrices : Corinne Amel Zayani, Stéphane Frénot, Raoudha Ben-Jemaa
Rapporteurs / Rapporteuses : Thierry Delot, Mahdi Khemakhem

Résumé

FR  |  
EN

L'IoT social est un nouveau paradigme qui améliore la navigabilité des réseaux IoT et stimule la découverte de services en intégrant les contextes sociaux. Néanmoins, ce paradigme est confronté à plusieurs défis qui réduisent la qualité de ses performances. La confiance, en particulier les attaques de confiance, est l'un des défis les plus importants. Certains utilisateurs adoptent des comportements malveillants et lancent des attaques pour propager des services malveillants. Un mécanisme de gestion de la confiance est devenu une exigence majeure dans l'IoT social pour prévenir ces attaques en temps réel et garantir des expériences dignes de confiance pour les utilisateurs finaux. Cependant, peu de travaux ont abordé les questions de gestion de la confiance pour prévenir les attaques de confiance dans les environnements de l'IoT social. La plupart des études ont été menées pour détecter les attaques en mode hors ligne avec ou sans spécification du type d'attaque réalisée. En outre, elles n'ont pas pris en compte les propriétés de sécurité, telles que la cryptographie, la transparence et l'immutabilité, etc. A cet égard, nous devons traiter les transactions en continu pour prévenir ces attaques au niveau de la génération des transactions en temps réel tout en maintenant les propriétés de sécurité. Pour ce faire, nous avons comparé les techniques et technologies utilisées précédemment, dont le point commun est la prévention des attaques dans les contextes sociaux et l'IoT. Sur la base de ces comparaisons, nous avons indiqué que la technologie blockchain peut aider à développer un mécanisme de gestion de la confiance qui peut prévenir les attaques de confiance tout en maintenant la sécurité. Pour le temps réel, nous avons proposé de combiner un moteur de traitement de flux distribué, connu sous le nom d'Apache Spark, avec la technologie blockchain. Notre choix est basé sur une comparaison des moteurs de traitement de flux de données open source. En conséquence, nous proposons un nouveau mécanisme de gestion de la confiance, basé sur la blockchain et Apache Spark. Ce mécanisme permet de prévenir en temps réel tous les types d'attaques de confiance effectuées par des nœuds malveillants, afin d'obtenir un environnement fiable. L'expérimentation réalisée sur un jeu de données réelles nous permet de prouver la performance de notre proposition.