Thèse soutenue

Hydrogénation asymétrique des substrats polaires et processus associés : rôle de la base

FR  |  
EN
Auteur / Autrice : Paven Kisten
Direction : Rinaldo PoliSimon Duckett
Type : Thèse de doctorat
Discipline(s) : Chimie Organométallique et de Coordination
Date : Soutenance le 28/11/2023
Etablissement(s) : Toulouse 3 en cotutelle avec University of York
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Chimie de Coordination (Toulouse ; 1974-....)
Jury : Président / Présidente : Laurent Maron
Examinateurs / Examinatrices : Christopher Spicer
Rapporteurs / Rapporteuses : David John Cole-Hamilton, Victoria Jiménez Rupérez

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

De nouveaux points de vue mécanistes sont apparus pour expliquer l'activité des systèmes avec des ligands non déprotonnables pour l'hydrogénation et l'hydrogénation par transfert de substrats polaires, qui ont néanmoins besoin d'une base forte pour être actifs. Dans ce travail, le rôle de la base dans la chimie associée de [IrCl(COD)(dppe)] est étudié. En présence d'un alcoxyde avec un bêta-hydrogène, deux complexes monohydrides de la forme [IrH(C8H12)(dppe)] résultent, qui s'interconvertissent avec une différence d'énergie de Gibbs de 2.06 ± 0.16 kcal mol-1. Ce processus a été suivi par un calcul DFT, et la différence prédite est de 3,5 kcal mol-1. En l'absence de bêta-hydrogène, deux complexes monohydrides se forment par déprotonation COD, [IrH(1-k-4,5,6-êta3-C8H10)(dppe)]. Des calculs DFT ont été utilisés pour rationaliser ce comportement et le mécanisme de réaction. Les différences thermodynamiques qui en résultent (-0,5 kcal mol-1) sont en excellent accord avec la valeur expérimentale (-0,51 ± 0,04 kcal mol-1). Ces complexes modèles ont été transformés par chauffage en présence de KOtBu (ou NaOMe) et d'isopropanol à 80 °C, en M[IrH4(dppe)] (M = K, Na). Des produits IrIII similaires (M[Ir(H)4(L2)] (L2 = dppf, (S)-BINAP) ont été sélectivement générés à partir de [IrCl(COD)(L2)]. Enfin, l'activité d'hydrogénation par transfert dépendant des métaux alcalins de ces complexes a été examinée et rationalisée pour la benzophénone. Le catalyseur actif, généré in situ à partir de [IrCl(COD)]2 et (P,SR) sous H2 en présence d'une base forte (M+iPrO- dans l'isopropanol, M = Li, Na, K), est le sel solvaté M[Ir(H)4(P,SR)] (P,SR = CpFe[1,2-C5H3(PPh2)(CH2SR)], avec R = iPr, Bz, Ph et Cy). Leur activité s'est avérée augmenter, pour tous les dérivés R, dans l'ordre Li < Na < K. Par ailleurs, la nature du cation n'a pas eu d'effet sur l'ee. Les calculs DFT ont révélé l'importance critique de la sphère de coordination du cation alcalin-métallique dans la reproduction des résultats expérimentaux. La barrière déterminant le taux correspond au transfert d'hydrure de la sphère externe et les interactions énantio-discriminantes sont rationalisées pour le cation.