Modèles réduits en présence d'incertitudes pour la dispersion atmosphérique micro-échelle de polluant en milieu urbain : exploration de méthodes d'apprentissage pour l'émulation de modèles haute-fidélité
Auteur / Autrice : | Bastien Nony |
Direction : | Mélanie Rochoux, Didier Lucor |
Type : | Thèse de doctorat |
Discipline(s) : | Océan, Atmosphère, Climat |
Date : | Soutenance le 20/01/2023 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Climat, Environnement, Couplages et Incertitudes (Toulouse ; 2015-....) |
Jury : | Président / Présidente : Fabrice Gamboa |
Examinateurs / Examinatrices : Mélanie Rochoux, Didier Lucor, Étienne Mémin, Lionel Soulhac, Amandine Marrel, Laure Raynaud | |
Rapporteurs / Rapporteuses : Étienne Mémin, Lionel Soulhac, Amandine Marrel |
Mots clés
Résumé
En cas de rejet accidentel de substances dangereuses en milieu urbain ou sur un site industriel, cartographier la concentration en polluants est un enjeu pour évaluer l'exposition du public à des doses toxiques. Il s'agit d'une problématique opérationnelle mais aussi scientifique, car l'interaction de la couche limite atmosphérique avec la canopée urbaine rend la dynamique de l'écoulement complexe et nécessite des outils de modélisation physique haute-fidélité. En résolvant explicitement l'essentiel du spectre de turbulence, l'approche de simulation aux grandes échelles (SGE) permet de représenter la variabilité spatio-temporelle de la concentration de polluants dans un environnement complexe. Concevoir une approche pour synthétiser cette grande quantité d'informations pour l'injecter dans des modèles opérationnels de plus basse fidélité est d'un grand intérêt. Néanmoins, dans ce contexte accidentel, l'approche de SGE reste sujette à des incertitudes atmosphériques et sur la source d'émission et nécessite un cadre de modélisation d'ensemble pour représenter l'éventail des scénarios plausibles de dispersion. Mais ce cadre multi-requête est inaccessible dans un contexte en temps réel car les simulations SGE nécessitent de très importants moyens de calcul. Dans cette thèse, nous explorons différentes approches d'apprentissage statistique pour construire un modèle réduit informé par l'approche de SGE afin d'obtenir des prévisions de concentration physiquement cohérentes, tout en diminuant considérablement le coût de calcul. Cette étude est effectuée sur un cas bidimensionnel de dispersion de traceur dans un écoulement turbulent de couche limite atmosphérique autour d'un obstacle isolé, pour lequel les conditions aux limites sur l'écoulement en entrée du domaine et la localisation de la source sont incertaines. Dans un premier temps, nous mettons en oeuvre une approche de modèle réduit basée sur les données de SGE pour prévoir les statistiques du champ de concentration du traceur. Nous comparons plusieurs approches de réduction de dimension (décomposition orthogonale en modes propres/POD versus auto-encodeur) pour réduire les champs d'intérêt à un nombre limité de variables latentes, et différents modèles de régression (e.g. chaos polynomial, processus gaussiens) pour représenter la réponse des variables latentes aux variations des paramètres incertains. La POD combinée à la régression par processus gaussiens permet d'obtenir de bonnes prévisions pour un grand jeu de données de SGE d'entraînement (composé de 450 solutions). L'hétérogénéité de la concentration proche de la source en amont de l'obstacle nécessite un grand nombre de modes POD pour être bien représentée. De plus, la capacité du modèle à réduire la dimension des champs peut être améliorée en remplaçant l'approche POD par un auto-encodeur convolutif. En réduisant le nombre de données d’entraînement, nous observons un non-respect des lois de la physique dans les prévisions du modèle réduit. Pour surmonter ce problème, dans un deuxième temps, nous mettons en oeuvre une approche de modèle réduit hybride basée sur l'équation de transport de traceur RANS (Reynolds-averaged Navier-Stokes) informée par les données de SGE afin d'intégrer des contraintes physiques dans le processus d'apprentissage. L'idée-clé est de découpler les incertitudes atmosphériques des incertitudes de source, et de remplacer les termes classiques de fermeture de la turbulence dans l'approche RANS par des modèles sur l'écoulement d'air émulés à partir des données de SGE. Cette approche nécessite beaucoup moins de données de SGE (seulement 50 solutions) que le modèle réduit directement émulé à partir des données de SGE. Nous montrons finalement qu'une approche multi-fidélité (combinant un petit nombre de solutions de SGE avec un grand nombre de prévisions du modèle réduit hybride) offre une perspective de recherche intéressante pour optimiser la performance du modèle réduit.