Thèse soutenue

Interférométrie atomique à grands transferts d'impulsion dans le régime de quasi-Bragg

FR  |  
EN
Auteur / Autrice : Ashley Beguin
Direction : David Guéry-OdelinAlexandre Gauguet
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 11/04/2023
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Collisions Agrégats Réactivité (Toulouse ; 1992-....)
Jury : Président / Présidente : Rémy Battesti
Examinateurs / Examinatrices : David Guéry-Odelin, Alexandre Gauguet, Naceur Gaaloul, Laurence Pruvost
Rapporteur / Rapporteuse : Franck Pereira Dos Santos, Andréa Bertoldi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Mon travail de thèse, réalisé au LCAR, contribue au développement de nouveaux interféromètres atomiques fondés sur l'utilisation de condensats de Bose-Einstein et de réseaux optiques. Ces nouveaux interféromètres sont envisagés afin d'améliorer la sensibilité de capteurs inertiels, pour tester la gravitation ou de nouveaux modèles en physique des particules. La spécificité de l'interféromètre en construction au LCAR est sa grande séparation spatiale permettant de mettre en forme les potentiels électromagnétiques et gravitationnels à proximité des bras de l'interféromètre. Cette approche ouvre la voie à de nouvelles mesures en physique fondamentale et en métrologie. Notre dispositif est dimensionné afin de réaliser des tests de neutralité atomique avec une nouvelle méthode fondée sur la phase d'Aharonov-Bohm Scalaire. Une amélioration de plusieurs ordres de grandeur par rapport aux limites actuelles est attendue. Dans mon manuscrit de thèse, je commence par exposer les principes d'interférométrie atomique qui ont guidé le dimensionnement de notre interféromètre. Je décris la source d'atomes ultra-froids et les premiers résultats de fontaine atomique obtenus avec nos condensats de Bose-Einstein. Pour réaliser nos interféromètres atomiques, les condensats sont manipulés par des réseaux optiques dans le régime de quasi-Bragg. Afin de mieux comprendre les limites de ces séparatrices atomiques, j'ai mené une étude numérique et expérimentale que j'expose dans le troisième chapitre. Je commente notamment l'impact lié à la nature multi-ports des interféromètres atomiques réalisés dans ce régime, qui mènent à des interféromètres parasites pouvant limiter l'estimation de la phase. Enfin, lors de ma thèse j'ai démontré des mesures de déphasage interférométrique avec une séparation en impulsion correspondant à l'impulsion de 170 photons. Ce transfert d'impulsion est au niveau de l'état de l'art pour ce type de dispositif et constitue un prérequis pour l'obtention des séparations spatiales envisagées.