Thèse soutenue

Parcimonie et optimisation convexe pour les systèmes dynamiques

FR  |  
EN
Auteur / Autrice : Corbinian Schlosser
Direction : Pierre WeissMilan Korda
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 26/04/2023
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)
Jury : Président / Présidente : Dirk Lebiedz
Examinateurs / Examinatrices : Pierre Weiss, Milan Korda, Christophe Prieur, Colin Jones, Maria Infusino
Rapporteurs / Rapporteuses : Christophe Prieur, Colin Jones

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette thèse, nous décrivons et analysons une interaction entre systèmes dynamiques, structures parcimonieuses, analyse convexe et analyse fonctionnelle. Nous abordons les attracteurs globaux à travers un problème d'optimisation linéaire (OL) de dimension infinie, nous étudions les semigroupes de Koopman et de Perron-Frobenius d'opérateurs linéaires associés à un système dynamique, et nous montrons comment un certain type de parcimonie induit des décompositions de plusieurs objets liés aux systèmes dynamiques ; ceci inclut l'attracteur global ainsi que les semigroupes de Koopman et de Perron-Frobenius. La première partie de ce travail se concentre sur la parcimonie pour les systèmes dynamiques. Nous définissons une notion de sous-systèmes d'un système dynamique et présentons comment le système peut être décomposé en ses sous-systèmes. Cette décomposition s'applique à de nombreux objets importants pour le système dynamique, tels que l'ensemble invariant maximal, l'attracteur global, ou la varieté stable stable et instable. Nous présentons les limites de notre approche d'un point de vue théorique et pratique. Nous montrons que la parcimonie peut être exploitée pour des tâches de calcul algorithmique. Un exemple est le calcul des attracteurs globaux via les deux OL de dimension infinie que nous proposons. Pour les systèmes dynamiques polynomiaux, nous résolvons ces OLs selon un raisonnement établi via des techniques d'optimisation polynomiale, ce qui donne lieu à une séquence de programmes semi-définis. Cela occasionne une séquence d'approximations externes de l'attracteur global qui converge vers l'attracteur global en ce qui concerne la divergence de la mesure de Lebesgue. Pour le semigroupe de Koopman et de Perron-Frobenius, la parcimonie induit une certaine structure en blocs de ces opérateurs. Cela implique une décomposition des objets spectraux correspondants tels que les fonctions propres et les mesures invariantes. Une conséquence directe est que les sous-systèmes induisent des fonctions propres pour le système entier et que les mesures invariantes pour le système dynamique induisent des mesures invariantes des sous-systèmes. Cependant, l'inversion de ce résultat est moins évidente. Nous montrons que pour les mesures invariantes, ce problème peut être résolu positivement sous les hypothèses de compatibilité nécessaires et pour les fonctions propres, nous nous limitons aux fonctions propres principales et supposons une régularité supplémentaire. Nous complétons l'étude de parcimonie des opérateurs de Koopman et de Perron-Frobenius par leur analyse sur des espaces de Banach à noyau reproducteur (RKBS). Cela suit et étend une voie de recherche actuelle qui étudie les espaces de Hilbert à noyau reproducteur (RKHS) comme domaines pour les opérateurs de Koopman et de Perron-Frobenius. Nous fournissons un cadre général pour l'analyse de ces opérateurs sur les RKBS, y compris leurs propriétés de base concernant la continuité et la fermeture. Plus précisément, nous étendons les propriétés de base connues de ces opérateurs des RKHS aux RKBS et nous énonçons de nouveaux résultats, y compris les concepts de symétrie et de parcimonie, sur ces opérateurs sur les RKBS pour les systèmes à temps discret et continu.