Thèse soutenue

Dynamique de l'hydrogène dans les solides : diffusion quantique et transition de phase plastique dans les hydrates sous pression

FR  |  
EN
Auteur / Autrice : Niccolo Avallone
Direction : Fabio FinocchiRiccardo SpeziaSimon Huppert
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance le 15/12/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut des nanosciences de Paris (1997-....)
Jury : Président / Présidente : Livia Eleonora Bove
Examinateurs / Examinatrices : Fausto Martelli
Rapporteurs / Rapporteuses : Grégory Geneste, Paola Gallo

Résumé

FR  |  
EN

Les simulations à l'échelle atomique des hydrates d'ammoniac posent des défis théoriques et numériques majeurs pour plusieurs raisons. La description de systèmes désordonnés et/ou frustrés nécessite des simulations à grande échelle (plusieurs milliers d'atomes sur des échelles de temps de l'ordre de la nanoseconde). Ceci rend impossible l'utilisation de méthodes ab initio pour décrire les interactions interatomiques. La présence d’hydrogène induit une grande complexité du diagramme de phase. Les propriétés spécifiques des liaisons hydrogène entre les molécules d'eau et d'ammoniac expliquent la plasticité, les sauts de protons produisent des phases ioniques et à haute pression, le comportement quantique des protons n'est pas négligeable : l'approximation habituelle de la dynamique moléculaire, qui traite les noyaux atomiques comme des objets classiques, n'est plus valable. Après un chapitre théorique sur les techniques de simulation utilisées, le deuxième chapitre de ce travail traite du problème de la diffusion du proton dans un solide avec la prise en compte des effets quantiques nucléaires. Deux classes principales de méthodes de dynamique moléculaire sont comparées, i.e. les méthodes de bain quantique (QTB/adQTB), basées sur l'équation de Langevin généralisée et les méthodes dérivant du formalisme des intégrales de chemin de la mécanique quantique ((T)RPMD). L'objectif est de déterminer quelle méthode serait la plus précise et numériquement la moins coûteuse pour étudier le saut et la diffusion des protons dans les hydrates d'ammoniac. La méthode (T)RPMD semble remplir approximativement cet objectif, tandis que les méthodes QTB/adQTB surestiment considérablement la diffusion. Toutefois, leur faible coût de calcul ne les exclut pas complètement de l'étude des propriétés quantiques de ces systèmes. Le troisième chapitre présente une étude théorique de la transition de phase cristal-plastique dans l'hémi-hydrate d'ammoniac, entre 2GPa et 10GPa, et entre 300K et 600K. Les résultats expérimentaux montrent l'apparition de phases plastiques et désordonnées, bien qu'ils ne fournissent pas d'explication complète sur les mécanismes à l'origine des transitions de phase. Nous utilisons principalement la dynamique moléculaire classique, couplée à des champs de force, afin de simuler plus de cent-milles atomes sur des échelles de temps de quelques dizaines de nanosecondes. Nos résultats localisent correctement la transition de phase et détectent le changement d'un cristal monoclinique à un alliage moléculaire désordonné avec une cellule cubique à corps centré, qui fond à très haute température. De plus, nous pouvons expliquer comment le réseau de liaisons hydrogène évolue avec la température, et de caractériser la phase plastique en termes de désordre orientationnel des dipôles moléculaires. Enfin, nous avons déterminé la diffusion moléculaire qui se produit à la transition et au-dessus, ce qui permet la formation de l'alliage eau-ammoniac prévu par les expériences. Les effets quantiques nucléaires ont été testés par les méthodes adQTB et (T)RPMD, en évaluant quelles propriétés sont les plus affectées par la nature quantique des atomes d'hydrogène.