Thèse soutenue

Impact du chargement mécanique sur la déformation et les propriétés électroniques des nanoparticules métalliques

FR  |  
EN
Auteur / Autrice : Matteo Erbi'
Direction : Hakim AmaraRiccardo Gatti
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance le 24/11/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'étude des microstructures (Châtillon, Hauts-de-Seine ; 1988-....)
Jury : Président / Présidente : Christine Mottet
Examinateurs / Examinatrices : Barbara Putz, Fabio Pietrucci, Francesco Montalenti
Rapporteurs / Rapporteuses : Riccardo Ferrando, Julien Godet

Résumé

FR  |  
EN

Les nanoparticules métalliques (NPs) sont des objets fascinants possédant des propriétés uniques qui diffèrent considérablement de leurs homologues massifs en raison de leur rapport surface/volume élevé. Ainsi, de nombreuses applications sont envisagées dans diverses domaines tels que la catalyse, la médecine ou encore l’optique. Toutefois, quel que soit leur domaine d’utilisation, les nanoparticules peuvent être soumises à des contraintes mécaniques entraînant des modifications structurales avec un impact considérable sur les applications visées. Dans cette thèse, nous explorons l'influence des caractéristiques physiques des NPs (forme, taille et composition) sur leurs propriétés mécaniques et étudions comment les déformations plastiques et élastiques affectent leurs capacités d'absorption. Le but est de proposer une voie unique et guidée pour développer une nouvelle classe de nano-objets. En combinant des calculs de dynamique moléculaire et des éléments finis, nous présentons une étude approfondie des déformations élastiques et plastiques de nanoparticules métalliques (Au, Cu et Pt) de différentes formes et tailles en imposant une contrainte sur les facettes (001) et (111). Dans le régime élastique, aucun effet de taille pour les nanoparticules de plus de 5 nm est relevé. En revanche, les propriétés élastiques des NP sont fortement influencées par la forme de la particule. Ainsi, pour une déformation donnée, la distribution du champ de contraintes dans la NP est hétérogène et dépend fortement de la forme de la NP avec un impact majeur sur les propriétés élastiques telles que le module d'Young effectif de la NP. L'accent est ensuite mis sur la transformation plastique des NPs en étudiant la contrainte critique nécessaire à la nucléation des dislocations. Plus précisément, nous cherchons à comprendre comment la forme et la taille des nanoparticules affectent l’apparition des toutes premières dislocations. Notre étude montre que la contrainte critique est fortement impactée par la taille et la forme des NPs. Par ailleurs, un effet universel de ces deux grandeurs sur la nucléation des dislocations est identifié pour les métaux de type cubiques à faces centrées, complétant les résultats de la littérature existante pour des formes de NP spécifiques. En outre, notre analyse met en évidence que les coins des NP sont des zones où la nucléation des dislocations se produit principalement. Par la suite, nous avons développé un modèle simple basé sur des calculs par éléments finis, indiquant que la dislocation nuclée lorsqu'une valeur spécifique de la contrainte de Von Mises est atteinte près des coins de la NP. Notre étude se penche également sur l’impact de la composition chimique sur les propriétés mécaniques des nanoparticules (ici CuAu). Dans ce cadre, des systèmes ordonnés et désordonnés sont considérés faisant apparaitre des comportements singuliers. Ainsi, les structures ordonnées présentent un renforcement mécanique par rapport aux NPs pures d'or ou de cuivre. En revanche, les solutions solides présentent un adoucissement complètement inattendu car contraire aux systèmes massifs. Les connaissances acquises dans le domaine de la déformation mécanique des nanoparticules sont finalement exploitées pour étudier les modifications de leurs propriétés électroniques. À cette fin, une analyse locale des densités d’états électroniques est développée sur la base d’un formalisme de type liaisons fortes pour calculer les effets des contraintes mécaniques sur les propriétés électroniques des nanoparticules de Pt indentées. Nos résultats soulignent que, contrairement à la déformation élastique, la déformation plastique introduit de nouveaux sites de surface faiblement coordonnés qui peuvent améliorer la réactivité de surface des NP. L'augmentation de la réactivité de surface de ces nouveaux sites est confirmée par des calculs DFT examinant l'absorption d'hydrogène sur des NP de Pt plastiquement déformées.