Affine Frequency Division Multiplexing (AFDM) pour communications sans fil
Auteur / Autrice : | Ali Bemani |
Direction : | Marios Kountouris, David Gesbert |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de l'ingénieur |
Date : | Soutenance le 08/12/2023 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Institut EURECOM (Sophia-Antipolis, Alpes-Maritimes) |
Jury : | Président / Présidente : Dirk T. M. Slock |
Examinateurs / Examinatrices : Lina Mroueh, Arman Shojaeifard | |
Rapporteurs / Rapporteuses : Giuseppe Caire, Christos Masouros |
Mots clés
Mots clés contrôlés
Résumé
La recherche de nouvelles formes d'onde robustes, lorsque utilisées sur des canaux doublement sélectifs, est primordiale. De telles formes d'onde permettraient donc d'assurer des communications fiables pour les réseaux sans fil de nouvelle génération dans les scénarios de haute mobilité. Dans cette thèse, une nouvelle solution, le affine frequency division multiplexing (AFDM), est proposée. Cette nouvelle forme d'onde de type multichirps est basée sur la transformée de Fourier affine discrète (DAFT), une variante de la transformée de Fourier discrète caractérisée par deux paramètres pouvant être adaptés pour mieux faire face aux canaux doublement dispersifs. Cette thèse offre une enquête complète sur les principes de l'AFDM au sein des communications à haute mobilité. Elle fournit un aperçu de la relation explicite entrée-sortie dans le domaine DAFT, révélant l'impact conséquent des paramètres de l'AFDM. Le manuscrit détaille le réglage précis des paramètres DAFT qui permette d'assurer une représentation complète délai-Doppler du canal de propagation sans fil. À travers des démonstrations analytiques, il est affirmé que l'AFDM atteint de manière optimale l'ordre de diversité des canaux doublement dispersifs en raison de la représentation complète délai-Doppler du canal qu'il permet d'obtenir. La thèse propose également deux algorithmes de détection à faible complexité pour l'AFDM, tirant parti de la parcimonie inhérente du canal. Le premier est un détecteur de type minimum mean squared error (MMSE) à faible complexité basé sur la factorisation LDL. Le deuxième est un égaliseur de type decision feedback equalizer (DFE) à faible complexité basé sur la combinaison cohérente, grace à la méthode maximum ratio combining (MRC), de différentes copies des symboles d'entrée du canal ayant été altérés par différents trajets de ce dernier. De plus, la thèse présente une technique de type embedded d'estimation de canal pour les systèmes AFDM, exploitant la capacité de l'AFDM à obtenir une représentation complète délai-Doppler du canal. Dans cette approche, un seul symbole pilote est inséré dans le domain DAFT du symbole AFDM, et les interférences que ce pilote pourrait générer pour les symboles de donnée sont évitées par des intervalles de garde. Un algorithme pratique d'estimation de canal, compatible avec ce schéma de transmission de pilote et basé sur une approche de type approximate maximum likelihood (ML), est aussi proposé. La thèse est conclue en se penchant sur de possibles applications de l'AFDM au delà de celles conçues pour les environnements marqués par une haute mobilité, spécifiquement les applications de type integrated sensing and communication (ISAC) et les communications dans les bandes de hautes fréquences. Il est démontré que pour identifier tous les composants de délai et de Doppler liés au milieu de propagation, on peut utiliser soit le signal AFDM complet, soit seulement sa partie pilote constituée d'un symbole de domaine DAFT et de son intervalle de garde. De plus, la nature chirp de l'AFDM permet une annulation simple de l'auto-interférence, éliminant ainsi le besoin de méthodes coûteuses normalement nécessaires dans les systèmes full duplex. La thèse met également en évidence les bonnes performances de l'AFDM pour les communications sans fil dans les bandes de hautes fréquences sans ou avec mobilité, grâce à la répartition maximale du signal AFDM en temps et en fréquences, assurant un gain de couverture. Contrairement à d'autres formes d'onde, l'AFDM ne fournit pas seulement une répartition maximale temps-fréquences mais assure également une détection robuste et efficace et une résilience au décalage de fréquence de porteuse et au bruit de phase.