Thèse soutenue

Limites d’échelle de marches branchantes critiques à valeurs dans des arbres, et du nombre de Horton-Strahler d’arbres de Galton-Watson

FR  |  
EN
Auteur / Autrice : Robin Khanfir
Direction : Thomas DuquesneShen Lin
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 06/11/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de probabilités, statistique et modélisation (Paris ; 2018-....)
Jury : Président / Présidente : Nicolas Curien
Examinateurs / Examinatrices : Yueyun Hu, Nicolas Broutin
Rapporteurs / Rapporteuses : Christina Goldschmidt, Jean-François Delmas

Résumé

FR  |  
EN

Dans cette thèse, on étudie des phénomènes discrets de branchement aléatoire et on cherche à les mettre en relation avec des structures métriques fractales continues. Les arbres de Galton-Watson, qui décrivent l’histoire généalogique d’une population asexuée dont les individus se reproduisent sous la même loi et indépendamment les uns des autres, constituent notre modèle principal. Dans un premier temps, on se consacre à l’étude d’une marche aléatoire (dite biaisée critique) sur un arbre infini (appelé l’environnement) et indexée par un arbre de Galton-Watson critique conditionné à être grand (appelé la généalogie). On suppose que la loi de reproduction de la généalogie est dans le domaine d’attraction d’une loi stable d’indice α ∈ (1, 2]. On traite d’une part du cas où l’environnement est un arbre régulier enraciné, et d’autre part du cas où il s’agit d’un arbre de Galton-Watson sur-critique modifié de façon à être de profondeur infinie. Sous une certaine hypothèse de moments pour l’environnement, on montre que le nombre de points visités par la marche croît linéairement, et à vitesse déterministe, en fonction de la taille de la généalogie lorsque cette dernière tend vers l’infini. En outre, on prouve que le sous-arbre des points visités par la marche branchante admet une limite d’échelle. Auparavant introduit dans le contexte de l’étude des cartes planaires aléatoire, cet espace métrique limite est le cactus brownien (réfléchi) avec mécanisme de branchement α-stable. La comparaison de cette étude nouvelle avec les travaux antérieurs sur les marches aléatoires indexées par le temps ou à valeurs dans un réseau euclidien illustre l’influence des branchements de la généalogie et de l’environnement. Dans un second temps, on s’intéresse à la complexité de branchement des arbres de Galton-Watson en étudiant leurs nombres de Horton-Strahler. Cet outil combinatoire, aussi appelé fonction de registre, a été originellement introduit en hydrogéologie mais a été redécouvert et appliqué par de nombreuses autres disciplines scientifiques par la suite. Ici, on donne un équivalent asymptotique déterministe du nombre de Horton-Strahler d’un arbre de Galton-Watson critique conditionné par la taille et dont la loi de reproduction est dans le domaine d’attraction d’une loi stable d’indice α ∈ [1, 2]. Cette estimation ne dépend que de α lorsque α ̸= 1, mais les cas α = 1 sont modèle- dépendants et sujets à des comportements plus complexes. On examine ensuite les fluctuations du nombre de Horton-Strahler chez la famille spécifique des arbres de Galton-Watson stables, qui contient l’arbre de Galton-Watson critique binaire. On est alors amené à introduire une variante continue du nombre de Horton-Strahler, et on montre que celle-ci converge après recentrage vers une caractéristique métrique de la limite d’échelle des arbres. On étudie les propriétés de cette quantité nouvelle qui joue le rôle d’un analogue du nombre de Horton-Strahler pour les arbres continus.