Thèse soutenue

Le paradigme exploration-exploitation : une approche biophysique

FR  |  
EN
Auteur / Autrice : Vito Dichio
Direction : Fabrizio De Vico Fallani
Type : Thèse de doctorat
Discipline(s) : Sciences et technologies de l'information et de la communication
Date : Soutenance le 23/10/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut du cerveau (Paris ; 2009-....)
Jury : Président / Présidente : Guido Caldarelli
Examinateurs / Examinatrices : Demian Battaglia, Gasper Tkacik
Rapporteurs / Rapporteuses : Guido Caldarelli, Marta Sales-Pardo

Résumé

FR  |  
EN

L'étude des systèmes vivants est notoirement difficile. La complexité déconcertante des systèmes biologiques, souvent citée, est principalement due à la complexité de leurs interactions, à leurs multiples niveaux d'organisation et à leur nature dynamique. Dans la quête de compréhension de cette complexité, les parallèles établis avec la physique standard - en particulier la physique statistique - sont à la fois utiles et d'une utilité limitée. D'une part, ils fournissent un riche ensemble d'éléments théoriques et méthodologiques pour construire des théories et concevoir des expériences. D'autre part, la vie biologique se déroule aussi selon des principes qui sont sans équivalent dans la physique de la matière conventionnelle. Une différence cruciale réside dans la notion de fonction : les systèmes biologiques sont façonnés par la nécessité d'accomplir des tâches spécifiques. Un problème général pour les systèmes vivants est de trouver et de promouvoir les configurations qui produisent des fonctions améliorées ou optimales, ce que nous appelons le problème de l'exploration-exploitation (EE). Un exemple spécifique de ce problème se trouve dans la biologie évolutive. Dans ce cas, des mutations génétiques aléatoires soutiennent l'exploration de l'espace de configuration, celles qui correspondent à un succès reproductif plus élevé étant favorisées par la sélection naturelle. Inspirés par ce dernier cas, nous développons un nouveau formalisme qui encode une dynamique générale d'exploration-exploitation pour les réseaux biologiques, représentée comme une exploration d'un paysage fonctionnel. En particulier, notre dynamique d'EE consiste en des changements de configuration stochastiques combinés à l'optimisation dépendante de l'état d'une fonction objective (métrique F). Nous commençons par étudier ses principales caractéristiques à travers l'étude de paysages fonctionnels simples et analytiquement traitables. Nous déployons des simulations pour des applications plus générales et plus complexes. Nous nous penchons ensuite sur le problème du câblage du cerveau, c'est-à-dire le développement du système nerveux d'un individu tout au long de sa vie. Nous soutenons que ce dernier est un autre exemple spécifique du problème de l'EE et qu'il peut donc être traité à l'aide de notre cadre théorique. En particulier, nous nous concentrons sur la maturation du cerveau chez le nématode C. elegans, le seul organisme pour lequel un réseau complet de neurones et de connexions neuronales a été reconstruit, à plusieurs moments du développement. Nous fixons le réseau à la naissance et utilisons le stade adulte pour déduire (i) une description max.ent. parcimonieuse (ERG) de la métrique F pour le cerveau du ver et (ii) les deux paramètres de notre dynamique EE. Selon la topographie de son paysage fonctionnel, le cerveau adulte est caractérisé par une tendance à former des triades et des nœuds de degré supérieur. Nous montrons que notre dynamique d'EE dans un tel paysage est capable de retracer toute l'histoire du développement. En particulier, nous montrons que la trajectoire que nous obtenons reproduit étroitement les autres points temporels expérimentaux que nous n'avons pas utilisés pour l'inférence. Ceci est vrai à la fois dans l'espace des statistiques du modèle et pour un certain nombre d'autres propriétés du réseau. En outre, nous discutons d'une interprétation micro-niveau de la dynamique de l'EE en termes de processus sous-jacent de formation des synapses. Notre étude est un premier pas vers la compréhension au niveau du système du développement d'un cerveau naturel et peut être étendue (i) à des paysages fonctionnels plus complexes, (ii) à d'autres organismes que le C. elegans et (iii) à d'autres problèmes que le câblage du cerveau. En effet, nous pensons que le paradigme de l'exploration-exploitation fait partie de ces principes spécifiques à la vie que nous commençons à peine à découvrir.