Thèse soutenue

Mise en évidence des schémas de dégradation des batteries Li-ion grâce à des procédures d'analyse électrochimique

FR  |  
EN
Auteur / Autrice : Valentin Meunier
Direction : Alexis Grimaud
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance le 15/09/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Chimie du solide et de l'énergie (Paris ; 2014-....)
Jury : Président / Présidente : Christel Laberty-Robert
Rapporteurs / Rapporteuses : Alexandre Ponrouch, Maxime Blangero

Résumé

FR  |  
EN

La chimie des électrodes positives dans les batteries Li-ion gravitent depuis ces vingt dernières années autour d’une famille d’oxydes lamellaire à base de nickel, manganèse et cobalt, aussi appelé phases NMC. La part belle étant faite à l’autonomie des batteries, les recherches visent à accroitre la densité énergétique de ces matériaux en augmentant leur fraction de nickel ainsi que leur tension de fonctionnement. Cependant, à des teneurs en nickel supérieure de 80% et tension de 4.2 V, les phases NMC sont sujettes à une série de dégradations physico-chimiques impliquant le matériau ainsi son interface avec électrolyte. Dégradations structurales, oxydation de l’électrolyte ou dissolution des métaux de transitions sont autant d’exemples illustrant la variété des mécanismes en jeu. Pire encore, les dégradations peuvent en déclencher d’autres et au final c’est toute la cellule qui se retrouve impactée, ce qui peut conduire à une chute brutale de la capacité de la batterie appelé « emballement ». Imprédictible et soudain, les emballements sont difficiles à expliquer avec les descripteurs classiques de performance comme la capacité en décharge (QD) ou l’efficacité coulombique. L’objectif de cette thèse est de développer des protocoles d’analyses combinant des techniques électrochimiques afin d’expliquer la chimie des dégradations en jeu, c’est-à-dire, le type de dégradation, leur localisation, et le tout, de façon quantitative. Ces techniques se basent principalement sur le glissement de capacités en fin de charge et décharge, ainsi que les dérivées dV/dQ et dQ/dV. Afin de mettre place ces techniques, le premier travail était de s’assurer de la qualité des mesures électrochimiques, grâce à la standardisation des méthodes d’assemblage et de test. Une fois les données répétables et de qualité, les protocoles ont permis d’étudier les effets de la dissolution du nickel sur l’électrode de graphite et de mettre en évidence des dégradations inattendues lors de l’utilisation d’un électrolyte super concentré, bien que reconnu pour sa haute stabilité. Les compostions d’électrolyte ont donc pu être adaptées afin de réduire les dégradations et augmenter la durée de vie de la batterie. En résumé, ces protocoles améliore la compréhension des dégradations et ainsi d’optimiser au mieux les conditions de fonctionnement des batteries Li-ion. Cela ouvre la voie vers la stabilisation interfaces et matériaux et le développement de nouvelles chimies.